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Abstract. We study lattice embeddings for the class of countable groups Γ defined
by the property that the largest amenable uniformly recurrent subgroup AΓ is
continuous. When AΓ comes from an extremely proximal action and the envelope
of AΓ is co-amenable in Γ, we obtain restrictions on the locally compact groups
G that contain a copy of Γ as a lattice, notably regarding normal subgroups of
G, product decompositions of G, and more generally dense mappings from G to a
product of locally compact groups.
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1. Introduction

The questions considered in this article fall into the setting of the following general
problem: given a (class of) countable group Γ, study the locally compact groups G
such that Γ embeds as a lattice in G, i.e. such that Γ sits as a discrete subgroup of G
and G/Γ carries a G-invariant probability measure.

Malcev showed that every finitely generated torsion free nilpotent group embeds
as a cocompact lattice in a unique simply connected nilpotent Lie group [65, Ch. II].
Conversely if G is a locally compact group with a finitely generated nilpotent lattice,
then after modding out by a compact normal subgroup, the identity component G0

is a Lie group of polynomial growth (these have been characterized in [39, 42]) and
G/G0 is finitely generated and virtually nilpotent. This statement is a combination
of several works. First if G has a finitely generated nilpotent lattice Γ, then Γ is
necessarily cocompact in G. Since Γ is virtually torsion free this is a classical fact
when G is totally disconnected, and the general case can be deduced from [5, Prop.
3.7] (which uses notably the solution of Hilbert’s fifth problem [61]). In particular
G is compactly generated with polynomial growth, and the statement then follows
from the generalization of Gromov’s polynomial growth theorem for locally compact
groups [53].

Beyond the nilpotent case, examples of classifications of embeddings of Γ as a co-
compact lattice have been obtained by Dymarz in [22] for several families of examples
of solvable groups Γ. Although not directly related to our concerns, we also mention
that a certain dual problem was considered by Bader–Caprace–Gelander–Mozes in
[1] for the class of amenable groups.

Outside the setting of amenable groups, Furman addressed the above problem for
the class of lattices Γ in semi-simple Lie groups in [27], improving rigidity results of
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Mostow, Prasad, Margulis (see the references in [27]; see also Furstenberg [30]). In
[3], Bader–Furman–Sauer considered a large class of countable groups Γ defined by
certain group theoretic conditions, and established, given a lattice embedding of Γ in
G, a general arithmeticity result in the setting where the connected component of G
is non-compact.

In this article we consider the class of groups whose Furstenberg uniformly recur-
rent subgroup is continuous, and we address the question of how the properties of
the Furstenberg uniformly recurrent subgroup of a countable group Γ influence the
locally compact groups into which Γ embeds as a lattice. Below we explain the above
terminology and include a discussion on this class of groups. Let us also mention at
this point that examples of lattice embeddings for groups within this class are de-
scribed in [50] (see Remark 1.4). We encourage the reader to read [50], that may be
considered as a companion article of the present work, in the sense that the examples
from [50] may be viewed as motivating examples for the problems that we address
here.

The groups under consideration. For a countable group Γ, the Chabauty space
Sub(Γ) of all subgroups of Γ is a compact space, on which Γ acts by conjugation. A
uniformly recurrent subgroup (URS) of Γ is a closed minimal Γ-invariant subset of
Sub(Γ) [34]. Glasner and Weiss showed that every minimal action of Γ on a compact
space X gives rise to a URS (see Proposition 3.2), called the stabilizer URS associated
to the action. Conversely every URS arises as the stabilizer URS of a minimal action
(see Matte Bon–Tsankov [58], and Elek [23] in the case of finitely generated groups).

URS’s have been shown to be related to the study of ideals in reduced group
C∗-algebras [44, 46] and reduced crossed products [45]. URS’s of several classes of
groups have been studied in [51]. For certain examples of groups Γ, rigidity results
about minimal actions on compact spaces have been obtained in [51] from a complete
description of the space URS(Γ). Various results about homomorphisms between
topological full groups of étale groupoids, notably obstructions involving invariants
of the groupoids, have been obtained in [57] via URS’s considerations (more precisely
via a complete description of the points in the Chabauty space of these groups whose
orbit does not approach the trivial subgroup). In the present article we will make
use of URS’s as a tool in order to study lattice embeddings for a class of countable
groups that we now define.

A URS is amenable if it consists of amenable subgroups. Every countable group Γ
admits a largest amenable URSAΓ (with respect to a natural partial order on URS(Γ),
see §3.1), which is the stabilizer URS associated to the action of Γ on its Furstenberg
boundary (see §2.2 for definitions). The URS AΓ is called the Furstenberg URS of
Γ. AΓ is either a point, in which case we have AΓ = {Rad(Γ)}, where Rad(Γ) is the
amenable radical of Γ, or homeomorphic to a Cantor space. In this last case we say
that AΓ is continuous. We refer to [51] for a more detailed discussion.

Let (C) denote the class of groups Γ for which the Furstenberg URS AΓ is continu-
ous. Equivalently, a group Γ belongs to (C) if and only if Γ admits an amenable URS
whose envelope is not amenable (see below for the definition of the envelope). The
class (C) is disjoint from all classes of groups previously mentioned in the introduc-
tion. More precisely, the class (C) is disjoint from the class of amenable groups, the
class of linear groups [6], and also from other classes of groups specifically considered
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in [3], such as groups with non-vanishing `2-Betti numbers [6] or acylindrically hyper-
bolic groups (see [19, Th. 7.19] and [6, Th. 1.4]). Examples of groups in (C) include
groups acting on trees with all end stabilizers amenable and non-trivial (see the dis-
cussion after Corollary 1.3 for explicit examples). The class (C) is stable under taking
quotient by an amenable normal subgroup and extension by an amenable group [51,
Prop. 2.20]. Also if Γ has a normal subgroup that is in (C), then Γ belongs to (C) [51,
Prop. 2.24]. By a result of Breuillard–Kalantar–Kennedy–Ozawa, the complement of
the class (C) is also stable under extensions (see [51, Prop. 2.24]).

The study of this class of groups is also motivated by the work of Kalantar–Kennedy
[44], who showed the following characterization: a countable group Γ belongs to (C)
if and only if the group Γ/Rad(Γ) has a reduced C∗-algebra that is not simple. For
an introduction and the historical developments of the problem of C∗-simplicity, we
refer to the survey of de la Harpe [40].

Topological boundaries. We will make use of the notion of topological boundary
in the sense of Furstenberg. These are compact spaces with a minimal and strongly
proximal group action (see §2.2 for definitions). Many different notions of boundaries
appear in the study of groups and group actions. What is now sometimes called
“boundary theory” is particularly well described in the introduction of [2]. We insist
that in the present article the term boundary will always refer to a topological bound-
ary in the above sense. This notion should not be confused with any of the measured
notions of boundaries. In particular, despite the possibly confusing terminology, the
maximal topological boundary, called the Furstenberg boundary, is not the same no-
tion as the measured notion of Poisson–Furstenberg boundary (for which we refer to
[24] for a recent survey).

Lattices and direct products. Special attention will be given to products of locally
compact groups. The study of lattices in product groups is motivated (among other
things) by its connections with the theory of lattices in semi-simple Lie groups, its rich
geometric aspects, as well as the instances of groups with rare properties appearing in
this setting. We refer to the literature (see [56, 71, 9, 11, 67, 68, 8, 66, 60, 4, 18, 15, 64])
for developments over the last years on the study of lattices in products of locally
compact groups.

Given a countable group Γ with a continuous Furstenberg URS and a group G
containing Γ as a lattice, we are interested in understanding how close the group G
can be from a direct product of two groups, or which properties the group G can
share with a direct product. Of course various notions of closeness can be considered.
The most basic one is to ask whether the group G admits non-trivial decompositions
as a direct product. One step further, one might consider quotient morphisms from
G onto direct products of groups. In Theorems 1.1 and 1.2 below we more generally
consider continuous morphisms with dense image from G to a direct product of groups
G→ G1×G2. We make no assumption about injectivity of these maps or injectivity
of the composition with the projection to one factor Gi. In particular this setting
allows maps of the form G→ G/N1×G/N2 for closed normal subgroups N1, N2 such
that N1N2 is dense in G.

Results. A central notion in this article is the one of extremely proximal action.
Minimal and extremely proximal actions naturally arise in geometric group theory,
and are boundaries in the sense of Furstenberg. We refer to §2.3 for definitions and
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examples. We say that the Furstenberg URS AΓ of a countable group Γ comes from
an extremely proximal action if there exists a compact space Z and a Γ-action on Z
that is minimal and extremely proximal, whose associated stabilizer URS is equal to
AΓ. Note that typically Z will not be the Furstenberg boundary of Γ. If H is a URS
of Γ, the envelope Env(H) of H is by definition the subgroup of Γ generated by all
the subgroups H ∈ H.

Theorem 1.1. Let Γ be a countable group whose Furstenberg URS comes from a
faithful and extremely proximal action, and let G be a locally compact group containing
Γ as a lattice. The following hold:

(a) Assume that Env(AΓ) is finitely generated and co-amenable in Γ. Then G
cannot be a direct product G = G1 ×G2 of two non-compact groups.

(b) Assume that Env(AΓ) has finite index in Γ and finite abelianization. Then
any continuous morphism with dense image from G to a product of locally
compact groups G→ G1 ×G2 is such that one factor Gi is compact.

This result has applications to the setting of groups acting on trees, see Corollary
1.3. We make several comments about the theorem:
1) We do not assume that Γ is finitely generated, nor that G is compactly generated.

For statement (a), The assumption that Env(AΓ) if finitely generated admits
variations, see Theorem 5.16.

2) Making an assumption on the “size” of the envelope of AΓ with respect to Γ is
natural, in the sense that in general there is no hope to derive any conclusion
on the entire group Γ if this envelope is too small. An extreme illustration of
this is that there are groups Γ whose Furstenberg URS comes from a faithful and
extremely proximal action but is trivial, and these can be lattices in products,
e.g. PSL(2,Z[1/p]) inside PSL(2,R) × PSL(2,Qp) (see also the discussion right
after Corollary 1.3).

3) Under the assumption that Env(AΓ) is co-amenable in Γ, the fact that the
Furstenberg URS AΓ comes from a faithful and extremely proximal action is
equivalent to asking that the action of Γ on AΓ is faithful and extremely proxi-
mal; see Remark 3.27. This provides an intrinsic reformulation of the assumption
not appealing to any auxiliary space.

4) For Γ as in the theorem, the assumption in statement (b) that Env(AΓ) has finite
index in Γ and Env(AΓ) has finite abelianization is equivalent to Γ being virtually
simple (see Proposition 4.6).

The URS approach to study lattice embeddings allows to consider more generally
subgroups of finite covolume. Recall that a closed subgroup H of a locally compact
group G has finite covolume in G if G/H carries a G-invariant probability measure.
Thus a lattice is a discrete subgroup of finite covolume. Before stating the following
result we need some terminology.

Recall the notion of disjointness introduced by Furstenberg in [29]. If X,Y are
compact G-spaces, X and Y are disjoint if whenever Ω is a compact G-space and
Ω→ X and Ω→ Y are continuous equivariant surjective maps, the map Ω→ X ×Y
that makes the natural diagram commute remains surjective (see §3.3). When X,Y
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are minimal G-spaces, this is equivalent to asking that the diagonal G-action on the
product X × Y is minimal.

Consider the following property: two non-trivial G-boundaries are never disjoint. A
group with this property will be called boundary indivisible. Glasner characterized
minimal compact G-spaces which are disjoint from all G-boundaries as those carrying
a fully supported measure whose orbit closure in the space of probability measures
is minimal [36, Th. 6.2]. The relation between disjointness and boundaries that we
consider here is of different spirit, as it deals with disjointness within the class of G-
boundaries, rather than disjointness from this class. Locally compact groups with a
cocompact amenable maximal subgroup are examples of boundary indivisible groups
[31, Prop. 4.4]. On the contrary, many discrete groups are not boundary indivisible.
The relevance of this property in our setting comes from the fact that, as we will show
in Proposition 3.24, a discrete group Γ as in Theorem 1.1 is boundary indivisible.
Actually the only examples of (non-amenable) boundary indivisible discrete groups
that we are aware of fall into the setting of Proposition 3.24.

Recall that a convex compactG-space is irreducible if it does not contain any proper
closed convex G-invariant subspace. We say that a subgroup L of a topological group
G is weakly co-amenable in G if whenever Q is a non-trivial convex compact G-
space in which L fixes a point, Q is not irreducible. This is indeed a weakening
of the notion of co-amenability †, which asks that every convex compact G-space Q
with L-fixed points has G-fixed points [25] (and hence Q is not irreducible, unless
trivial). If G has a subgroup that is both amenable and weakly co-amenable, then G
is amenable; and a normal weakly co-amenable subgroup is co-amenable. However in
general weak co-amenability does not imply co-amenability, even for discrete groups.
In §6.3 we exhibit examples of finitely generated groups such that every subgroup
is either amenable or weakly co-amenable, but having non-amenable subgroups that
are not co-amenable.

Finally we say that a subgroup L ≤ G is boundary-minimal if there exists a
non-trivial G-boundary on which L acts minimally. We refer to §5.1 for context and
examples.

Theorem 1.2. Let H be a locally compact group with an amenable URS that comes
from an extremely proximal action, and whose envelope is co-amenable in H. Let
G be a locally compact group containing H as a closed subgroup of finite covolume.
Then G is boundary indivisible, and the following hold:

(a) Every closed normal subgroup of G is either amenable or co-amenable.
(b) If L is a boundary-minimal subgroup of G, and L is uniformly recurrent, then

L is weakly co-amenable in G.

Again we make several comments:
1) The groupH is allowed to be discrete, so the theorem applies for all groups Γ as in

Theorem 1.1. While boundary indivisibility of G will be an intermediate step in
the proof of Theorem 1.1, statements (a) and (b) provide additional information
that is rather independent of the conclusion of Theorem 1.1.

2) (a) will be deduced from (b), as we will prove that any non-amenable normal
subgroup is boundary-minimal (see Theorem 5.2).

†and not a relative version of a notion of weak amenability.
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3) If Rad(G) denotes the amenable radical of G, statement (a) could be equivalently
stated saying that G/Rad(G) is a just non-amenable group, i.e. G/Rad(G) is non-
amenable and every proper quotient is amenable.

4) Theorem 1.2 does not say anything about amenable normal subgroups of G. It
is worst pointing out that, as illustrated by the examples discussed in [50], it
happens that a discrete group Γ satisfying the assumptions of Theorem 1.2 and
with trivial amenable radical, sits as a lattice in a group G with non-compact
(e.g. infinite discrete) amenable radical.

5) Remark 5.15 below provides counter-examples showing that in statement (b) the
conclusion cannot be strengthened by saying that L is co-amenable in G.

We view the above remarks 4)-5) as illustrations of the limitations of the use of
topological boundaries and URS’s to the problem addressed here in the rather abstract
setting of Theorem 1.2.

Group actions on trees are a natural source of extremely proximal actions, and
Theorems 1.1 and 1.2 find applications in this setting. In the following statement T
is a locally finite simplicial tree.
Corollary 1.3. Let Γ ≤ Aut(T ) be a countable group having no proper invariant
subtree and no finite orbit in T ∪∂T . Assume that Γξ is non-trivial and amenable for
all ξ ∈ ∂T ; and Γ is virtually simple. If G is a locally compact group containing Γ as
a lattice, then:

(a) any continuous morphism with dense image G → G1 × G2 is such that one
factor Gi is compact. In particular G itself cannot be a direct product of two
non-compact groups.

(b) Every closed normal subgroup of G is either amenable or co-amenable.
(c) If L is a boundary-minimal subgroup of G, and L is uniformly recurrent, then

L is weakly co-amenable in G.
A group Γ as in Corollary 1.3 is never discrete in Aut(T ). Recall that Burger

and Mozes constructed simple groups Γ acting on two locally finite regular trees
T, T ′ such that the image of Γ in Aut(T ) and Aut(T ′) are non-discrete, but Γ acts
freely and cocompactly on T × T ′, so that Γ is a cocompact lattice in the product
Aut(T ) × Aut(T ′) [11]. These examples illustrate the fact that the assumption in
Corollary 1.3 that end-stabilizers are all non-trivial is essential.

Examples of groups to which Corollary 1.3 applies can be found among the family
of groups denoted G(F, F ′) in [48] (see Corollary 6.22). These are examples of groups
with a continuous Furstenberg URS. Here F ′ ≤ Sym(d) is a finite permutation group
and F is a regular subgroup of F ′. Recall that a permutation group is regular if
it acts freely and transitively. The group G(F, F ′) is then a finitely generated group
acting on a d-regular tree, transitively on vertices and edges, and with local action
at every vertex isomorphic to F ′. We refer to §6.2 for a definition. The normal
subgroup structure of these groups is highly sensible to the permutation groups:
there are permutation groups F, F ′ such that G(F, F ′) virtually admits a non-abelian
free quotient (Proposition 6.11), and there are permutation groups F, F ′ such that
G(F, F ′)∗ (the subgroup of index two in G(F, F ′) preserving the bipartition of Td)
is simple [48, Cor. 4.14]. This family of groups and the family of Burger–Mozes
lattices in the product of two trees both contain instances of finitely generated simple
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groups which embed densely in some universal group U(F )+ [10, §3.2]. Despite
these similarities, Corollary 6.22 shows that any group containing a virtually simple
G(F, F ′) as a lattice is rather allergic to any direct product behavior.

Remark 1.4. As mentioned earlier, examples of lattice embeddings for the groups
G(F, F ′) are described in [50]. There it is shown that these groups do embed as
irreducible lattices in locally compact groups, but these locally compact groups are
wreath products rather than direct products.

We also mention that other examples of groups to which Corollary 1.3 can be
applied may be found among the family of piecewise prescribed tree automorphism
groups considered in [49, Sec. 4].

Questions. We end this introduction with two questions. Extreme proximality is
used in a crucial way at different stages of the proofs of Theorems 1.1 and 1.2. These
results both fail without the extreme proximality assumption, simply because then
the group itself may very well be a direct product. Putting aside these trivial counter-
examples, we do not know whether serious algebraic restrictions on a locally compact
group may be derived from the existence of a lattice with a continuous Furstenberg
URS. In this direction, we find the following question natural:

Question 1.5. Does there exist Γ with a continuous Furstenberg URS which is a
lattice in a group G = G1 × G2 such both factors are non-discrete, and Γ has an
injective and dense projection to each factor ? What if we impose moreover that Γ
has trivial amenable radical ?

Theorem 2.8 from [50] presents a situation of a locally compact group G with two
cocompact lattices Γ1,Γ2 ≤ G such that the stabilizer URS associated to the Γ1-action
on ∂spG is {Rad(Γ1)}, while the stabilizer URS associated to the Γ2-action on ∂spG is
continuous. Here ∂spG stands for the Furstenberg boundary of G; see §2.2. In these
examples the group G splits as G = N o Q, where N is the amenable radical of G.
The lattice Γ1 preserves this splitting, meaning that we have Γ1 = (N ∩Γ1)o(Q∩Γ1)
(and hence Γ1 does not act faithfully on ∂spG), while Γ2 has an injective projection
to Q. This naturally raises the following:

Question 1.6. Let G be a locally compact group with two lattices Γ1 and Γ2 both
acting faithfully on X = ∂spG. Is it possible that the Γ1-action on X is topologically
free, but the Γ2-action on X is not topologically free ? Can this happen with ∂spG =
G/H being a homogeneous G-space ?

Note that by [28, Prop. 7], the condition that Γ1 and Γ2 act faithfully on ∂spG
is equivalent to saying that Γ1 and Γ2 have trivial amenable radical. Recall that
topologically free means that there is a dense subset of points having trivial stabilizer
(equivalently, the stabilizer URS is trivial).

Outline of proofs and organization. The article is organized as follows. In
the next section we introduce terminology and preliminary results about topologi-
cal boundaries and extremely proximal actions. In Section 3 we establish the results
about uniformly recurrent subgroups that are used in later sections. In particular
we prove a certain gap property for URS’s coming from extremely proximal actions
(Proposition 3.17). Combined with an observation about compact spaces with com-
parable stabilizer URS’s (Proposition 3.9), we deduce that a locally compact group
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H with an amenable URS that comes from an extremely proximal action, and whose
envelope is co-amenable in H, is boundary indivisible (Proposition 3.24).

The setting of Section 4 is that of a group admitting a non-topologically free ex-
tremely proximal action. We establish intermediate results, notably concerning nor-
mal subgroups (Proposition 4.6) and commensurated subgroups (Proposition 4.12),
and deduce non-embedding results for this class of groups (see Proposition 4.10 and
Corollary 4.13).

In Section 5 we use results from Section 3 together with Proposition 5.11 of Fursten-
berg and prove Theorem 1.2. We then specify to discrete groups and give the proof
of Theorem 1.1. The proof essentially splits in two steps: the first one is the applica-
tion of Theorem 1.2 to obtain amenability of one factor, and the second consists in
proving that under appropriate assumptions the amenable factor is compact, using
results from Section 4.

In Section 6 we consider groups acting on trees, and apply previous results of the
article to this setting. After giving the proof of Corollary 1.3, we focus on the family
of groups with prescribed local action G(F, F ′). We study boundaries of these groups,
and use results from Section 3 in order to characterize the discrete groups within this
family which are boundary indivisible (see Theorem 6.9). This includes those which
are virtually simple, but this also contain non-virtually simple instances.

Acknowledgements. I am grateful to Alex Furman for pointing out Proposition
5.11 to my attention, and to Uri Bader for enlightening discussion about the proof.
I am also grateful to Pierre-Emmanuel Caprace, Yves Cornulier, Bruno Duchesne,
Nicolás Matte Bon, Nicolas Monod and Pierre Pansu for interesting discussions and
comments related to this work; and to a referee for a careful reading of the article
and for useful comments.

2. Preliminaries

2.1. Conventions and terminology. The letter G will usually refer to a topological
group, while Γ will denote a discrete group. The group of homeomorphic automor-
phisms of G will be denoted Aut(G). Whenever G is a locally compact group, we will
always assume that G is second countable.

The notation X will refer to a topological space. The letters X,Y will be reserved
for compact spaces, and Z for a compact space equipped with an extremely proximal
group action. All compact spaces are assumed to be Hausdorff.

A space X is a G-space if G admits a continuous action G× X → X . The action
of G on X (or the G-space X ) is minimal if all orbits are dense. The G-space X is
said to be trivial if X is a one-point space.

If X is locally compact, we denote by Prob(X ) the set of all regular Borel proba-
bility measures on X . The space of continuous compactly supported functions on X
is denoted CK(X ). Each µ ∈ Prob(X ) defines a linear functional on CK(X ), and we
endow Prob(X ) with the weak*-topology: a net (µi) converges to µ if µi(f) → µ(f)
for all f ∈ CK(X ). By Banach-Alaoglu theorem, Prob(X ) is relatively compact in
CK(X )∗.

We denote by 2X the set of all closed subsets of X . The sets

O(K;U1, . . . , Un) =
{
C ∈ 2X : C ∩K = ∅; C ∩ Ui 6= ∅ for all i

}
,
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where K ⊂ X is compact and U1, . . . , Un ⊂ X are open, form a basis for the Chabauty
topology on 2X . Endowed with the Chabauty topology, the space 2X is compact. We
will freely identify X with its image in 2X by the natural inclusion x 7→ {x}. Note
that when X is a G-space, so is 2X .

In the particular case where X = G is a locally compact group, the space Sub(G)
of closed subgroups of G is closed in 2G. In particular Sub(G) is a compact space,
on which G acts by conjugation. A uniformly recurrent subgroup (URS) of G is
a closed, G-invariant, minimal subset of Sub(G). The set of URS’s of G is denoted
URS(G). By extension we also say that a subgroup H ≤ G is uniformly recurrent if
the closure of the conjugacy class of H in Sub(G) is minimal.

2.2. Topological boundaries. Let X be a compact G-space. The action of G on X
is proximal if the closure of any G-orbit in X ×X intersects the diagonal. The G-
action on X is strongly proximal if the closure of any G-orbit in Prob(X) contains
a Dirac measure. Strong proximality is stable under taking products (with diagonal
action) and continuous equivariant images (see e.g. [37]).

We say that X is a boundary if X is both minimal and strongly proximal. For
every topological group G, there exists a unique boundary ∂spG with the universal
property that for any boundary X, there exists a continuous G-equivariant surjection
∂spG → X [31, Prop. 4.6]. This universal space ∂spG is referred to as the Fursten-
berg boundary of G. It is easy to verify that any amenable normal subgroup N of
G acts trivially on any G-boundary, so that ∂spG = ∂sp(G/N).

If G admits a cocompact amenable subgroup, then the Furstenberg boundary is
a homogeneous space ∂spG = G/H, and the G-spaces of the form G/L with L con-
taining H are precisely the G-boundaries [31, Prop. 4.4]. The situation for discrete
groups is quite different: as shown in [44] and [6], Furstenberg boundaries of discrete
groups are always non-metrizable (unless trivial).

The following is a fundamental property of boundaries (see [37, III.2.3]):
Theorem 2.1. Any convex compact G-space contains a boundary. In fact if Q is an
irreducible convex compact G-space, then the action of G on Q is strongly proximal,
and the closure of extreme points of Q is a G-boundary.

Irreducible means that Q has no proper closed convex G-invariant subspace. In
particular Theorem 2.1 has the following consequence ([37, III.3.1]):
Theorem 2.2. A group G is amenable if and only if all G-boundaries are trivial, or
equivalently ∂spG is trivial.
2.3. Extremely proximal actions. Let X be a compact G-space. A closed subset
C of X is compressible if the closure of the G-orbit of C in the space 2X contains
a singleton {x}. Equivalently, for every neighbourhood U of x, there exists g ∈ G
such that g(C) ⊂ U . The action of G on X is extremely proximal if every closed
subset C ( X is compressible. References where extremely proximal actions were
considered include [35, 47, 43, 26, 51].

We will make use of the following result, which is Theorem 2.3 from [35]:
Theorem 2.3. Let X be a compact G-space, and assume X has at least three points.
If the G-action on X is extremely proximal, then it is strongly proximal.

Examples of extremely proximal actions are provided by group actions on trees
or hyperbolic spaces. If G ≤ Aut(T ) acts on T with no proper invariant subtree
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and no finite orbit in T ∪ ∂T , then the action of G on ∂T is minimal and extremely
proximal; and if G acts coboundedly on a proper geodesic hyperbolic space X with
no fixed point or fixed pair at infinity, then the G-action on the Gromov boundary
∂X is minimal and extremely proximal.

These two situations are particular cases of the following more general result, that
we believe is well-known. A homeomorphism g of a space X is hyperbolic if there
exist ξ−, ξ+ ∈ X, called the endpoints of g, such that for all neighbourhoods U−, U+
of ξ−, ξ+, for n large enough we have gn(X \ U−) ⊂ U+ and g−n(X \ U+) ⊂ U−.

Proposition 2.4. If G acts on a compact space X with hyperbolic elements having
no common endpoints, and such that the set of endpoints of hyperbolic elements of G
is dense in X, then the action is minimal and extremely proximal.

Proof. Let U ⊂ X be a non-empty open invariant subset. By our density assumption,
there is g ∈ G hyperbolic whose attracting endpoint ξ+ belongs to U . So for every
x 6= ξ−, there is n > 0 such that gn(x) ∈ U since U is open, so we deduce that
U contains X \ {ξ−}. But the existence of hyperbolic elements with no common
endpoints ensures that G fixes no point of X, so finally U = X, i.e. the action is
minimal.

Now if C ( X is a closed subset then again there is g ∈ G whose attracting
endpoint is outside C, and C is compressible to the repealing endpoint of g. �

Recent work of Duchesne and Monod shows that group actions on dendrites is also
a source of extremely proximal actions. Recall that a dendrite X is a compact metriz-
able space such that any two points are the extremities of a unique arc. Duchesne
and Monod show that if Γ acts on X with no invariant proper sub-dendrite, then
there is a unique minimal closed invariant subset M ⊆ X and the Γ-action on M is
extremely proximal. See the proof of Theorem 10.1 in [21].

Extremely proximal actions also play a prominent role in the context of group
actions on the circle. For any minimal action α : Γ → Homeo+(S1), either α(Γ) is
conjugated to a group of rotations, or α(Γ) has a finite centralizer CΓ in Homeo+(S1)
and the action of Γ on the quotient circle CΓ\S1 is extremely proximal: see Ghys
[33] and Margulis [55]. We mention however that in all the examples of countable
groups Γ with an action on S1 that is minimal and not topologically free that we are
aware of, the stabilizer URS is either non-amenable, or not known to be amenable.
In particular we do not know any application of Theorem 1.1 to groups acting on the
circle.

In the sequel we will make use of the following easy lemma.

Lemma 2.5. Let G be a topological group, and H a subgroup of G such that there is
some compact subset K of G such that G = KH. Let X be a compact G-space, and
C a closed subset of X that is compressible by G. Then C is compressible by H. In
particular if the G-action on X is extremely proximal, then the H-action is extremely
proximal.

Proof. By assumption there exists x ∈ X and (gi) such that gi(C) converges to x in
2X . If gi = kihi, by compactness of K we assume that (ki) converges to some k, and
it follows that hi(C) converges to k−1x by continuity of G× 2X → 2X . �

3. Uniformly recurrent subgroups
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3.1. Generalities on uniformly recurrent subgroups. Let G be a locally com-
pact group. ForH,K ∈ URS(G), we writeH 4 K when there exist H ∈ H andK ∈ K
such that H ≤ K. This is equivalent to the fact that every H ∈ H is contained in an
element of K, and every K ∈ K contains an element of H, and the relation 4 is an
order on URS(G). See e.g. §2.4 in [51].

For simplicity the URS {N} associated to a closed normal subgroupN of G will still
be denotedN . In particularN 4 H (resp.H 4 N) means thatN is contained in (resp.
contains) all the elements of H. By the trivial URS we mean the URS corresponding
to the trivial subgroup {1}. We warn the reader that in this terminology the URS
corresponding to a non-trivial normal subgroup N is trivial as a G-space (it is a
one-point space), but is not trivial as a URS.

Let X,Y be compact G-spaces. We say that X is a factor of Y , and Y is an
extension of X, if there exists a continuous equivariant map Y → X that is onto. If
π : Y → X is a continuous equivariant map, we say that π is almost 1-1 if the set
of y ∈ Y such that π−1(π(y)) = {y} is dense in Y . When moreover π is onto we say
that Y is an almost 1-1 extension of X.

We now recall the definition of the stabilizer URS associated to a minimal action
on a compact space. If X is a compact G-space and x ∈ X, we denote by Gx the
stabilizer of x in G.

Definition 3.1. If X is a compact G-space, we denote by X0 ⊂ X the set of points
at which Stab : X → Sub(G), x 7→ Gx, is continuous.

Upper semi-continuity of the map Stab and second countability of G imply that
X0 is a dense subset of X (indeed if (Un) is a basis of the topology on G and Xn is
the set of x ∈ X such that Gx ∩ Un 6= ∅, which is closed, one verifies that Stab is
continuous on ∩n(∂Xn)c). Following [34], we denote

X̃ = cls {(x,Gx) : x ∈ X0} ⊂ X × Sub(G),
and

SG(X) = cls {Gx : x ∈ X0} ⊂ Sub(G),
where cls stands for the closure in the ambient space. We have the obvious inclusions

X̃ ⊆ X∗ := cls {(x,Gx) : x ∈ X}
and

SG(X) ⊆ S∗G(X) := cls {Gx : x ∈ X} .
We denote by ηX and πX the projections from X × Sub(G) to X and Sub(G)

respectively.

Proposition 3.2 (Prop. 1.2 in [34]). If X is a minimal compact G-space, then ηX :
X̃ → X is an almost 1-1 extension, and X̃ and SG(X) are the unique minimal closed
G-invariant subsets of respectively X∗ and S∗G(X).

Definition 3.3. If X is a minimal compact G-space, SG(X) is the stabilizer URS
associated to the G-action on X. The action of G on X is topologically free if
SG(X) is trivial, i.e. SG(X) = {{1}}.

Remark 3.4. When G is not assumed second countable, in general X0 is no longer
dense in X. However it is still possible to define the stabilizer URS associated to a
minimal action on a compact space; see the discussion in [58, p1].
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In the sequel we will sometimes use the following version of Proposition 3.2.

Proposition 3.5. Let X be compact G-space, and let H ≤ G be a subgroup acting
minimally on X. Then H acts minimally on X̃ and SG(X), and X̃ and SG(X) are
the unique minimal closed H-invariant subsets of X∗ and S∗G(X).

Proof. Let Y ⊆ X∗ closed and H-invariant. Since X is a factor of X∗ and H acts
minimally on X, for every x ∈ X0 there exists L ∈ Sub(G) such that (x, L) ∈ Y .
But for x ∈ X0, the fact that (x, L) belongs to X∗ forces L to be equal to Gx by
definition of X0, and it follows that X̃ ⊆ Y . Moreover H acts minimally on X̃ since
ηX : X̃ → X is an almost 1-1 extension and minimality is preserved by taking almost
1-1 extensions (if π : X1 → X2 is almost 1-1 and if C ⊆ X1 is a closed subset such
that π(C) = X2, then C = X1). So the statements for X̃ and X∗ are established,
and the same hold for SG(X) and S∗G(X) since these are factors of X̃ and X∗. �

3.2. Envelopes. Let G be a locally compact group and H ∈ URS(G).

Definition 3.6. The envelope Env(H) of H is the closed subgroup of G generated
by all the subgroups H ∈ H.

By definition Env(H) is the smallest closed subgroup ofG such thatH ⊂ Sub(Env(H)).
Note that Env(H) is a normal subgroup of G, and is actually the smallest normal
subgroup such that H 4 Env(H).

Let Γ be a discrete group, X a compact Γ-space and X0 the domain of continuity
of the map Stab. It is a classical fact that X0 consists of those x ∈ X such that for
every γ ∈ Γx, there exists U neighbourhood of x that is fixed by γ (see e.g. [70, Lem.
5.4] for a proof). For x ∈ X, we will denote by Γ0

x ≤ Γx the set of elements fixing a
neighbourhood of x, so that x ∈ X0 if and only if Γx = Γ0

x.

Lemma 3.7. Let Γ be a countable discrete group, X a compact minimal Γ-space,
n ≥ 1 and γ1, . . . , γn ∈ Γ. The following are equivalent:

(i) ∩Fix(γi) has non-empty interior;
(ii) there is x ∈ X such that γi ∈ Γ0

x for all i;
(iii) same as in (ii) but with x ∈ X0;
(iv) there is H ∈ SΓ(X) such that γi ∈ H for all i.

In particular Env(SΓ(X)) is generated by the elements γ ∈ Γ such that Fix(γ) has
non-empty interior.

Proof. It is clear that (i) and (ii) are equivalent. Also (iii) clearly implies (ii), and (ii)
also implies (iii) by density of X0 in X. Finally (iii) implies (iv) since Γ0

x ∈ SΓ(X)
for x ∈ X0, and (iv) implies (iii) by density of the set of Γ0

x, x ∈ X0, in SΓ(X). �

3.3. G-spaces with comparable stabilizer URS’s. We recall the notion of dis-
jointness from [29]. Two compact G-spaces X,Y are disjoint if whenever X,Y are
factors of a compact G-space Ω via ϕX : Ω → X and ϕY : Ω → Y , then the map
(ϕX , ϕY ) : Ω → X × Y is surjective. When X,Y are minimal G-spaces, this is
equivalent to saying that the product X × Y remains minimal [29, Lem. II.1].

The following lemma presents a situation which easily implies disjointness:

Lemma 3.8. Let X,Y be minimal compact G-spaces such that there exists y0 ∈ Y
such that Gy0 acts minimally on X. Then X and Y are disjoint.
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Proof. This is clear: if W is a closed invariant subset of X × Y , then by minimality
of Y there exists x0 ∈ X such that (x0, y0) ∈ W . Since Gy0 acts minimally on X we
deduce that W contains X ×{y0}, and by minimality of Y it follows that W is equal
to X × Y . �

The following proposition will be used notably in Proposition 3.24.

Proposition 3.9. Let X,Y be compact minimal G-spaces, and write H = SG(X) and
K = SG(Y ). Suppose that H 4 K. Then X and Y can be disjoint only if Env(H) 4 K.

In particular if SG(X) = SG(Y ) and this URS is not a point, then X and Y are
not disjoint.

Proof. Using notation from Proposition 3.2, we have almost 1-1 extensions ηX : X̃ →
X and ηY : Ỹ → Y , and we write η = ηX × ηY : X̃ × Ỹ → X ×Y , and π = πX × πY :
X̃× Ỹ → H×K. The set W ⊆ H×K of pairs (H,K) such that H ≤ K is non-empty
by assumption, is clearly G-invariant, and is easily seen to be closed. IfW is a proper
subset of H × K then π−1(W ) is a proper subset of X̃ × Ỹ since π is a factor, and
it follows that η

(
π−1(W )

)
is a closed G-invariant subset of X × Y that is proper

since η is almost 1-1. This contradicts disjointness of X and Y . Therefore we have
W = H × K. This means that for a fixed K ∈ K we have H ≤ K for every H ∈ H,
and hence Env(H) 4 K. �

3.4. Action of a URS on a G-space. In this paragraph G still denote a locally
compact group, and X is a compact G-space. Given H ∈ URS(G), we study the
properties of the action of elements on H on the space X.

The proof of the following lemma is an easy verification, and we leave it to the
reader.

Lemma 3.10. If X is a compact G-space, {H ∈ Sub(G) |H fixes a point in X} is a
closed G-invariant subset of Sub(G).

In particular the following definition makes sense.

Definition 3.11. Let X be a compact G-space, and H ∈ URS(G). We say that H
fixes a point in X if for some (all) H ∈ H, there is x ∈ X such that h(x) = x for all
h ∈ H.

Lemma 3.12. Let X be a compact G-space, Y ⊆ X a closed invariant subset of X,
and H ∈ URS(G). If there exists H ∈ H fixing x ∈ X such that Gx∩ Y 6= ∅, then H
fixes a point in Y .

Proof. By assumption there exist (gi) and y ∈ Y such that gi(x) converges to y. If
K ∈ H is a limit point of (Hgi) (which exists by compactness), then K fixes y by
upper semi-continuity of the stabilizer map. �

Lemma 3.12 implies the following:

Lemma 3.13. If X is a compact G-space containing a unique minimal closed G-
invariant subset Xmin ⊂ X (e.g. X is proximal), and if H ∈ URS(G) fixes a point in
X, then H fixes a point in Xmin.

Proposition 3.14. Let Z be a compact G-space that is extremely proximal, and
H ∈ URS(G). Then either H fixes a point in Z, or all H ∈ H act minimally on Z.
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Proof. If there exist H ∈ H and a non-empty closed subset C ( Z that is invariant
by H, then we may apply Lemma 3.12 to the space X = 2Z , the subspace Y = Z
and the point x = C, and we deduce that H fixes a point in Z. �

Recall that given a compact G-space X, S∗G(X) stands for the closure in Sub(G)
of the set of subgroups Gx, x ∈ X.

Lemma 3.15. Let X be a compact G-space. Assume that K ≤ G is a closed subgroup
of G which acts minimally on X and such that there exists H ∈ S∗G(X) with H ≤ K.
Then Env(SG(X)) ≤ K.

Proof. Since K acts minimally on X, the closure of the K-orbit of H in S∗G(X)
contains SG(X) according to Proposition 3.5. Since H ∈ Sub(K) and Sub(K) is
a closed subset of Sub(G), we deduce that SG(X) ⊂ Sub(K), and in particular
Env(SG(X)) ≤ K. �

Definition 3.16. Let H ∈ URS(G). We say that H comes from an extremely
proximal action if there exists a compact G-space Z that is minimal and extremely
proximal, and such that SG(Z) = H.

It was shown in [51] that for a discrete group Γ with a non-trivial URS H coming
from an extremely proximal action, any non-trivial K ∈ URS(Γ) must be “relatively
large” with respect to H (see [51, Th. 3.10] for a precise statement). Appropriate
assumptions on Γ and H further imply that H 4 K for every non-trivial K ∈ URS(Γ)
[51, Cor. 3.12]. The following proposition goes in the opposite direction by considering
URS’s larger than H.

Proposition 3.17. Let H ∈ URS(G) that comes from an extremely proximal action.
Let K ∈ URS(G) such that H 4 K and H 6= K. Then Env(H) 4 K.

Proof. Let Z be a compact G-space that is minimal and extremely proximal and such
that SG(Z) = H. Fix K ∈ K, and assume that K does not act minimally on Z.
According to Proposition 3.14 this implies that the URS K fixes a point in Z, i.e.
K 4 H. Since moreover H,K satisfy H 4 K by assumption, we deduce that H = K,
which is a contradiction. Therefore K acts minimally on Z. Since moreover there
exists H ∈ H such that H ≤ K, we are in position to apply Lemma 3.15, from which
the conclusion follows. �

It should be noted that Proposition 3.17 is false without the extreme proximality
assumption, as in general there are plenty of URS’s between H and Env(H).

Lemma 3.18. Let H ∈ URS(G) that comes from an extremely proximal action. Then
Env(H) acts minimally on H.

Proof. Let Z be a compact G-space that is minimal and extremely proximal and such
that SG(Z) = H, and let N = Env(H). Without loss of generality we may assume
that H is not a point, since otherwise there is nothing to prove. This ensures that
N acts non-trivially on Z. By extreme proximality N must act minimally on Z (see
Lemma 4.2), and therefore also on H by Proposition 3.5. �

Remark 3.19. The extreme proximality assumption cannot be removed in Lemma
3.18. Indeed it is not true in general that, given H ∈ URS(G), H remains a URS of
Env(H). Indeed, as explained in [34], any minimal subshift on two letters gives rise
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to a URS H of the lamplighter group G = C2 o Z, such that H is contained in the
Chabauty space Sub(L) of the base group L = ⊕C2. In particular Env(H) lies inside
the abelian group L, and it follows that Env(H) acts trivially on H.

Proposition 3.20. Let H ∈ URS(G) that comes from an extremely proximal action,
and assume H is not a point. Then:

(a) The action of G on H gives rise to the same URS, i.e. SG(H) = H.
(b) If moreover H comes from a faithful extremely proximal action, then the action

of G on H is faithful.

Proof. Write K = SG(H). By definition we have H 4 K. Argue by contradiction
and suppose H 6= K. Then applying Proposition 3.17, we deduce that Env(H) acts
trivially on H. But Env(H) also acts minimally on H by Lemma 3.18, so we deduce
that H must be a point, a contradiction. This shows (a).

For (b), arguing as in the proof of Lemma 3.18 we see that any non-trivial normal
subgroup N of G acts minimally on H. Since H is not a point, we have in particular
that N acts non-trivially on H. �

Remark 3.21. Proposition 3.20 implies that, as far as our interest lies inside the URS
associated to a minimal and extremely proximal action (and not the space Z itself),
there is no loss of generality in assuming that (G,Z) is a sub-system of (G, Sub(G)).
See also Remark 3.27.

3.5. Amenable URS’s. Recall that we say that H ∈ URS(G) is amenable if every
H ∈ H is amenable. The following lemma already appeared in [51, Prop. 2.21].

Lemma 3.22. If H ∈ URS(G) is amenable and X is a G-boundary, then H 4 SG(X).

Proof. SinceH is amenable,Hmust fix a point in the compactG-space Prob(X). Now
X is the unique minimal G-invariant subspace of Prob(X) since X is a G-boundary,
so by Lemma 3.13 we have that H fixes a point in X, i.e. H 4 SG(X). �

Proposition 3.23. Let X be a compact minimal G-space such that H = SG(X) is
amenable, and let Y be a G-boundary such that X and Y are disjoint. Then Env(H)
acts trivially on Y .

In particular if Env(H) is co-amenable in G, a non-trivial G-boundary is never
disjoint with X.

Proof. The fact that Env(H) must act trivially on Y follows by applying Lemma
3.22 and Proposition 3.9. Since an amenable group has no non-trivial boundary, the
second statement follows. �

Proposition 3.23 says that when G admits an amenable URS whose envelope is
co-amenable, a non-trivial G-boundary is never disjoint with X. This conclusion is
not satisfactory for our concerns as it depends on the choice of a space X and not only
on G. Although there is no hope to get a better conclusion in full generality, the next
result, which will play an important role in Section 5, will remove this dependence
under an extreme proximality assumption.

We recall from the introduction that we say that G is boundary indivisible if
two non-trivial G-boundaries are never disjoint.

Proposition 3.24. Assume that G admits an amenable H ∈ URS(G) that comes
from an extremely proximal action, and let X be a non-trivial G-boundary.
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(a) Either SG(X) = H, or Env(H) acts trivially on X.
(b) Assume that Env(H) is co-amenable in G. Then SG(X) = H, and G is

boundary indivisible.

Proof. (a). Since H is amenable, we have H 4 SG(X) by Lemma 3.22. Now if we
assume H 6= SG(X), then according to Proposition 3.17 we have Env(H) 4 SG(X),
which exactly means that Env(H) acts trivially on X.

(b). If SG(X) 6= H then the action of G on X factors through an action of
G/Env(H) by (a). But by assumption the latter is amenable, so has no non-trivial
boundaries. So it follows that X is trivial, a contradiction. Therefore all non-trivial
G-boundaries have the same stabilizer URS H. Since moreover H cannot be a point
(because otherwise G would be amenable), the fact that G is boundary indivisible
follows from Proposition 3.9. �

For a countable group Γ, the Furstenberg URS of Γ is the stabilizer URS asso-
ciated to the action of Γ on its Furstenberg boundary. We refer to [51] for the proof
of the following properties.

Proposition 3.25. Let Γ be a countable group, and AΓ its Furstenberg URS. Then
the following hold:

(a) AΓ is amenable, and H 4 AΓ for every amenable H ∈ URS(Γ).
(b) If X is a Γ-boundary, then AΓ 4 SΓ(X). If moreover there is x ∈ X such

that Γx is amenable, then AΓ = SΓ(X).
(c) AΓ is invariant under Aut(Γ).

Proposition 3.26. Let Γ be a countable group, and let Λ = Env(AΓ) be the envelope
of the Furstenberg URS of Γ. Then Λ acts minimally on AΓ, and AΓ = AΛ.

Proof. The conjugation action of Γ on the normal subgroup Λ = Env(AΓ) induces a
map Γ → Aut(Λ). Since AΛ is invariant under Aut(Λ) by Proposition 3.25, it is in
particular Γ-invariant. Moreover the action of Γ on AΛ is clearly minimal since it is
already the case for Λ. Therefore AΛ is an amenable URS of Γ, so it follows that
AΛ 4 AΓ since AΓ is larger than any amenable URS of Γ. On the other hand AΓ is a
closed and Λ-invariant subset of Sub(Λ) consisting of amenable subgroups, so by the
domination property applied to AΛ we must have AΓ 4 AΛ. Equality follows. �

Remark 3.27. When Env(AΓ) is co-amenable in Γ, the fact that AΓ comes from
a faithful and extremely proximal action is equivalent to saying that the Γ-action
on AΓ is faithful and extremely proximal. The direct implication is consequence of
Proposition 3.20, and the converse follows from Proposition 3.24. This gives us an
intrinsic reformulation of the assumption of Theorem 1.1 inside the Chabauty space
of Γ.

4. Extremely proximal actions

If X is a Hausdorff Γ-space and U ⊂ X , we denote by ΓU the set of elements of Γ
acting trivially on X \ U . We say that the action of Γ on X is micro-supported if
ΓU is non-trivial for every non-empty open set U .

We will need the following easy lemma.

Lemma 4.1. Assume that the action of Γ on X is micro-supported, and let U be a
non-empty open set. Then ΓU is not solvable.
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Proof. Assume that Λ is a subgroup of ΓU whose action on U is micro-supported,
and let V be a non-empty open subset of U . By assumption there exists a non-trivial
λ1 ∈ ΛV , so that we may find an open set W ⊂ V such that W and λ1(W ) are
disjoint. For λ2 ∈ ΛW , the commutator [λ1, λ2] coincides with λ−1

2 on W , and is
therefore non-trivial provided that λ2 is non-trivial. It follows by induction that if
ΓU,n is the n-th term of the derived series of ΓU , then the action of ΓU,n on U is
micro-supported. In particular ΓU,n is never trivial, and ΓU is not solvable. �

In this section we will consider the following setting:
(EP) Γ is a discrete group, Z is a compact Γ-space, and the action of Γ on Z is

faithful, minimal and extremely proximal. In order to avoid trivialities, we assume
that Z has at least three points.

Unless specified otherwise, in the remaining of this section Γ and Z will be assumed
to satisfy (EP). Our goal is to derive various properties on the group Γ that will be
used in later sections.

Lemma 4.2. Let N ≤ Homeo(Z) be a non-trivial subgroup that is normalized by Γ.
Then N acts minimally and does not fix any probability measure on Z.

Proof. Assume there exists C ( Z that is closed and N -invariant. Since C is com-
pressible and N is normalized by Γ, wee see that N has a fixed point in Z. Now the
set of N -fixed points is Γ-invariant, so it has to be the entire Z by minimality, and
N is trivial. The same argument shows the absence of N -invariant probability mea-
sure on Z, since an extremely proximal action is also strongly proximal by Theorem
2.3. �

In all this section the terminology topologically free (see Definition 3.3) has to
be understood with Γ viewed as a discrete group. Therefore that the action is not
topologically free means that there exists γ 6= 1 which acts trivially on a non-empty
open subset of Z.

Lemma 4.3. If the action of Γ on Z is not topologically free, then it is micro-
supported.

Proof. Let U be a non-empty open subset of Z. Let γ be a non-trivial element such
that there is a non-empty open set V on which γ acts trivially, and let g ∈ Γ such
that g(X \ V ) ⊂ U . Then the non-trivial element gγg−1 acts trivially outside U , so
ΓU is non-trivial. �

Definition 4.4. Let Γ0 be the subgroup of Γ generated by the elements γ ∈ Γ such
that Fix(γ) has non-empty interior.

Remark 4.5. When Γ is a countable group, Γ0 is also equal to the envelope of the
URS SΓ(Z) by Lemma 3.7.

Recall that the monolith Mon(Γ) is the intersection of all non-trivial normal
subgroups of Γ. We say Γ is monolithic if Mon(Γ) is non-trivial.

Proposition 4.6. Assume that the action of Γ on Z is not topologically free. Then
the following hold:

(a) The commutators [γ1, γ2], where Fix(γ1) ∩ Fix(γ2) has non-empty interior,
generate [Γ0,Γ0].
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(b) Γ is monolithic, and one has Mon(Γ) = [Γ0,Γ0].
(c) Any non-trivial normal subgroup of Γ has trivial centralizer.
(d) If the action of [Γ0,Γ0] on Z is extremely proximal, then [Γ0,Γ0] is a simple

group.
(e) Γ is virtually simple if and only if Γ0 has finite index in Γ and finite abelian-

ization.

Proof. (a) Denote by N the subgroup generated by the set of [γ1, γ2], where γ1, γ2
act trivially on a common open set. We show that for every g, h fixing non-empty
open sets U, V , the commutator [g, h] belongs to N . Since Γ0 is generated by all these
elements g, h, this will show that Γ0/N is abelian. Hence [Γ0,Γ0] ≤ N , and the other
inclusion is clear.

First note that N is not trivial by Lemmas 4.1 and 4.3. Therefore N acts minimally
on Z according to Lemma 4.2, and we may find s ∈ N such that the open set
W = U∩s(V ) is non-empty. Since g and hs fixW by construction, we have [g, hs] ∈ N .
But since s ∈ N , we deduce that [g, h] = [h, s]g[g, hs][s, h] is a product of three
elements of N , and hence belongs to N , as desired.

(b) We shall show that any non-trivial normal subgroup N contains [Γ0,Γ0]. Since
[Γ0,Γ0] is itself a non-trivial normal subgroup, this will prove that it is the monolith
of Γ. By a classical commutator manipulation (see e.g. Lemma 4.1 from [62]), there
exists an open set U such that N contains the derived subgroup of ΓU . Now let γ1, γ2
fixing an open set V . If γ is such that γ(Z \V ) ⊂ U , then γγ1 , γ

γ
2 are supported inside

U , so that [γγ1 , γ
γ
2 ] = [γ1, γ2]γ is contained in N . Since N is normal, [γ1, γ2] ∈ N .

Now all these elements generate [Γ0,Γ0] by (a), hence the conclusion.
(c) If N is a normal subgroup of Γ, then so is CΓ(N). Therefore they cannot

be both non-trivial, because otherwise the intersection would be abelian and would
contain [Γ0,Γ0] by the previous paragraph, a contradiction.

(d) If the action of [Γ0,Γ0] on Z is extremely proximal, then according to (b) the
monolith N of [Γ0,Γ0] is non-trivial. Since N is characteristic in [Γ0,Γ0], N is normal
in Γ, and hence contains [Γ0,Γ0] by (b). So N = [Γ0,Γ0] and [Γ0,Γ0] is simple.

(e) For Γ to be virtually simple it is clearly necessary that the normal subgroup
[Γ0,Γ0] has finite index in Γ. Conversely, if this condition holds then the action of
[Γ0,Γ0] on Z is extremely proximal (Lemma 2.5), and [Γ0,Γ0] is simple by (d). �

Definition 4.7. Let X be a topological space, and let Γ be a group acting on X . A
non-empty open set Ω ⊂ X is wandering for Γ if the translates γ(Ω), γ ∈ Γ, are
pairwise disjoint. We say that Ω is wandering for γ if it is wandering for 〈γ〉.

Proposition 4.8. Let Γ and Z as in (EP). Then there exist an open set Ω and a
non-abelian free subgroup F2 = ∆ ≤ Γ such that Ω is wandering for ∆.

Proof. Following Glasner [35], we consider pairwise disjoint non-empty open sets
U−, U+, V−, V+, and elements a, b ∈ Γ such that a(Z \U−) ⊂ U+ and b(Z \V−) ⊂ V+.
Let W = U− ∪ U+ ∪ V− ∪ V+. It follows from a ping-pong argument than any non-
trivial reduced word in the letters a, b sends the complement of W inside W , so that
the subgroup ∆ generated by a, b is free [35, Th. 3.4].

Upon reducing W if necessary, we may find an open set Ω such that Ω ∩W = ∅
and a(Ω) ⊂ U+, a−1(Ω) ⊂ U−, b(Ω) ⊂ V+ and b−1(Ω) ⊂ V−. Induction on the word
length shows that if the left-most letter of γ ∈ ∆ is respectively a, a−1, b, b−1, then
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γ(Ω) lies respectively inside U+, U−, V+, V−. In particular Ω ∩ γ(Ω) is empty since Ω
is disjoint from W , so Ω is wandering for ∆. �

Proposition 4.9. Retain notations (EP). Then the wreath product ΓU o F2 embeds
into Γ for every open subset U ( Z that is not dense.

Proof. Let Ω and ∆ as in Proposition 4.8, and let Λ be the subgroup of Γ generated by
ΓΩ and ∆. Since Ω is wandering for ∆, all the conjugates γΓΩγ

−1 pairwise commute,
and it follows that Λ is isomorphic to ΓΩ o F2. Now if U is an in the statement,
by extreme proximality the group ΓU is isomorphic to a subgroup of ΓΩ, hence the
conclusion. �

The argument in the following proof is borrowed from [12].

Proposition 4.10. In the setting (EP), if the action of Γ on Z is not topologically
free, then Γ cannot have any faithful linear representation.

Proof. Let U be an open subset of Z. By Lemmas 4.1 and 4.3, we may find a non-
abelian finitely generated subgroup B inside ΓU . Now if we choose U small enough, it
follows from Proposition 4.9 that the finitely generated group Λ = B oF2 is isomorphic
to a subgroup of Γ. Since Λ is not residually finite [38], it admits no faithful linear
representation by Malcev’s theorem [54], and a fortiori the same is true for Γ. �

Recall that a subgroup Λ of a group Γ is commensurated if all conjugates of Λ
are commensurable, where two subgroups are commensurable if the intersection has
finite index in both.

The beginning of the argument in the proof of the following proposition already
appeared in [52]. The idea is to extend classical techniques for normal subgroups to
certain commensurated subgroups.

Proposition 4.11. Let Γ and Z as in (EP), and assume that the action of Γ on Z is
not topologically free. If Λ is a commensurated subgroup of Γ such that there exists an
element of Λ admitting a wandering open set, then Λ contains the monolith Mon(Γ).

Proof. Let λ ∈ Λ admitting a wandering open set Ω. We shall first prove that [ΓΩ,ΓΩ]
is contained in Λ. Let g, h ∈ ΓΩ, and let also n ≥ 1. Since Ω is wandering we have
Ω ∩ λn(Ω) = ∅. It follows that the commutator [g, λn] is trivial outside Ω ∪ λn(Ω),
and coincides with g on Ω and with λng−1λ−n on λn(Ω). Therefore its commutator
with h is trivial outside Ω, and is coincides with [g, h] on Ω. But since g, h ∈ ΓΩ, the
elements [[g, λn], h] and [g, h] actually coincide everywhere, i.e. [[g, λn], h] = [g, h].

Now since Λ is commensurated in Γ, there exists n0 ≥ 1 such that [[g, λn0 ], h]
belongs to Λ. Applying the previous argument with n = n0, we deduce that [g, h]
belongs to Λ.

In order to prove the statement, it is enough to prove that [ΓC ,ΓC ] is contained
in Λ for every closed subset C ( Z according to Proposition 4.6. So let C a proper
closed subset of Z. By minimality and extreme proximality, there is γ ∈ Γ such that
γ(C) ⊂ Ω. Fix such a γ, and choose some integer n1 ≥ 1 such that γ−1λn1γ belongs
to Λ. Set λ′ = γ−1λn1γ and Ω′ = γ−1(Ω). This Ω′ is wandering for λ′ and λ′ ∈ Λ, so
[ΓΩ′ ,ΓΩ′ ] is contained in Λ by the first paragraph. Since C ⊂ Ω′, we have ΓC ≤ ΓΩ′ ,
and the proof is complete. �
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Proposition 4.12. Let Γ and Z as in (EP), and assume that the action of Γ on
Z is not topologically free. Then there exists a free subgroup F2 ≤ Γ such that for
every commensurated subgroup Λ ≤ Γ not containing the monolith Mon(Γ), we have
F2 ∩ Λ = 1.

Proof. Let F2 be a free subgroup of Γ as in the conclusion of Proposition 4.8. If
Λ ≤ Γ is a commensurated subgroup such that F2 ∩ Λ 6= 1, then in particular Λ
contains an element admitting a wandering open set. So by Proposition 4.11 we
have Mon(Γ) ≤ Λ. This shows that every commensurated subgroup not containing
Mon(Γ) intersects F2 trivially. �

Corollary 4.13. Let Γ and Z as in (EP), and assume that the action of Γ on Z
is not topologically free. If G is a locally compact amenable group whose connected
component G0 is a Lie group, then there exists no injective homomorphism Γ→ G.

Proof. Argue by contradiction and assume Γ embeds inG. Let U be an open subgroup
of G containing G0 as a cocompact subgroup (the existence of U follows from van
Dantzig’s theorem [41, Th. 7.7] applied to the totally disconnected groupG/G0). Such
a U is commensurated in G, so the subgroup Γ ∩ U is commensurated in Γ. If there
exists U such that Γ∩U does not contain Mon(Γ), then according to Proposition 4.12
we may find a non-abelian free subgroup F2 ≤ Γ such that F2 ∩ U = 1. In particular
G contains the non-amenable group F2 as a discrete subgroup, which contradicts
amenability of G. Therefore Mon(Γ) is contained in U for every choice of U . Since
compact open subgroups form a basis at 1 in G/G0 by van Dantzig’s theorem, it
follows that Mon(Γ) actually lies inside G0. Now since G0 is a connected Lie group,
the group Aut(G0) is linear, so the map G → Aut(G0) induced by the conjugation
action of G on G0 is not injective in restriction to Γ by Proposition 4.10. Therefore
this map must vanish on Mon(Γ), which means that Mon(Γ) actually lies inside the
center of G0. In particular Mon(Γ) is abelian, which contradicts Proposition 4.6. �

5. The proofs of Theorems 1.1 and 1.2

5.1. Boundary-minimal subgroups. In this paragraph we consider the following
property:

Definition 5.1. Let G be a topological group, and L a closed subgroup of G. We
say that L is boundary-minimal if there exists a non-trivial G-boundary on which
L acts minimally.

It should be noted that being boundary-minimal does not prevent L from being
amenable. For instance the action of Thompson’s group T on the circle S1 is a
boundary action, and the abelian subgroup of T consisting of rotations acts minimally
on S1. Other examples may be found among the groups acting on trees considered in
§6.2, where the stabilizer of a vertex is an amenable subgroup acting minimally on
the ends of the tree.

In the sequel we will mainly focus on the case when L is normal in G, or more
generally when L belongs to a URS (see Proposition 5.10). By contrast with the
previous examples, a normal boundary-minimal subgroup is never amenable, as a
normal amenable subgroup ofG acts trivially on anyG-boundary. Recall that Furman
showed [28, Prop. 7] (see also Caprace–Monod [16, Prop. 3]) that ifN is non-amenable
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normal subgroup of a locally compact group G, there always exists a G-boundary on
which N acts non-trivially. It turns out that we actually have the following:

Theorem 5.2. Let G be a locally compact group, and N a closed normal non-
amenable subgroup. Then there exists a non-trivial G-boundary on which the N -action
is minimal and strongly proximal.

Before going into the proof, we introduce the following terminology:

Definition 5.3. Let G be a topological group, and H a closed subgroup of G. We
say that a G-boundary X is a (G,H)-boundary if the H-action on X is strongly
proximal.

The usual argument for the existence of a universal G-boundary extends to this
setting:

Lemma 5.4. Let G be a topological group, and H a closed subgroup of G. Then
there exists a unique (G,H)-boundary ∂sp(G,H) such that for any (G,H)-boundary
X, there is a G-equivariant surjection ∂sp(G,H)→ X.

Moreover if H = N is normal in G, then N acts minimally on ∂sp(G,N).

Proof. We consider the product P of all (G,H)-boundaries. The H-action on P
remains strongly proximal. The group G admits a unique minimal closed invariant
subset M in P , and the H-action on M is strongly proximal. Hence M satisfies the
desired property. This shows existence, and the argument for uniqueness is the same
as in the case H = G [37, II.4.1].

By strong proximality, the subgroup H has a unique minimal invariant subspace
Y in ∂sp(G,H). So when H is a normal subgroup of G, we have that Y must be
G-invariant, and hence Y = ∂sp(G,H) by minimality of G. �

As in the classical case H = G, the universal property of the space ∂sp(G,H) allows
to obtain the following:

Lemma 5.5. Let G be a topological group, and N ≤ L ≤ G closed subgroups such
that N is normal in G and L has finite index in G. Then the L-action on ∂sp(L,N)
extends to a G-action, and ∂sp(L,N) and ∂sp(G,N) are isomorphic G-spaces.

Proof. The argument is exactly the same as in the usual case, so we refer the reader
to [37, II.4.3-4]. The proof uses the universal property from 5.4 and makes use of the
existence of a finite index subgroup L′ of L that is normal in G. The only thing that
needs to be observed here is that L′ may be chosen to contain N and that the action
by conjugation by elements of G on L′ indeed preserves N , because we have chosen
N to be normal in G. �

We now give the proof of Theorem 5.2:

Proof. Since N is normal in G, the desired conclusion is equivalent to the existence
of a non-trivial (G,N)-boundary. Upon replacing G by the quotient G/Rad(G) of G
by its amenable radical, and N by its image closure in G/Rad(G), we may assume
without loss of generality that the group G has trivial amenable radical. According
to [8, Th. 3.3.3] (see also the more recent reference [7]), G admits a finite index
characteristic open subgroup G′ that is isomorphic to a direct product S×Gtd, where
S =

∏
Si is a direct product of (center-free, non-compact) connected simple Lie
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groups, and Gtd is a totally disconnected subgroup. Note that we may very well
replace N by N ∩ G′, and since the desired conclusion is invariant by passing to a
finite index open subgroup according to Lemma 5.5, we may actually assume that
G = G′ = S ×Gtd.

If the normal subgroup N has a non-trivial projection to S, then there is a factor
Si on which N maps densely, and it follows that the G-action on ∂spSi is a non-trivial
(G,N)-boundary. Hence we may assume that N lies inside Gtd, i.e. we are reduced
to the case where G is a totally disconnected group.

In this situation, by considering the preimage of a compact open subgroup in the
quotient G/N , we find an open subgroup O ≤ G that is commensurated in G and
that contains N as a cocompact subgroup. Since O is commensurated in G, the
uniqueness of ∂spO and its invariance under taking finite index closed subgroups of
O allow to extend the action of O on X = ∂spO to an action of G (see [20, Th. 6.2]),
and this action is continuous since O is open in G. Note that O is not amenable since
N is not amenable, so X is non-trivial. Moreover the N -action on X is minimal and
strongly proximal since N is cocompact and normal in O [37, II.3.1-2], so it follows
that X is a non-trivial (G,N)-boundary. �

5.2. Weakly co-amenable subgroups. In this paragraph we consider the following
weakening of the notion of co-amenability.
Definition 5.6. Let G be a topological group, and H a subgroup of G. We say
that H is weakly co-amenable in G if whenever Q is a non-trivial convex compact
G-space in which H fixes a point, Q is not irreducible.

The following properties readily follow from the definition.
Proposition 5.7. Let K ≤ H ≤ G be subgroups of G.

(i) If H ≤ G is co-amenable then H is weakly co-amenable.
(ii) For a normal subgroup NCG, weakly co-amenable is equivalent to co-amenable.
(iii) If H ≤ G is amenable and weakly co-amenable in G, then G is amenable.
(iv) If ϕ : G → G′ is continuous with dense image and H ≤ G is weakly co-

amenable, then ϕ(H) is weakly co-amenable in G′.
(v) If K is weakly co-amenable in G, then H is weakly co-amenable in G.
(vi) If K is co-amenable in H and H is weakly co-amenable in G, then K is weakly

co-amenable in G.
Proof. (i) If Q is non-trivial convex compact G-space with H-fixed points, then there
is a G-fixed point by co-amenability of H in G, so Q is not irreducible.

(ii) If N C G is not co-amenable, there is a convex Q such that Fix(N) is non-
empty but Fix(G) is empty. Since N is normal Fix(N) is G-invariant, so that by
Zorn’s lemma Fix(N) contains an irreducible convex G-space, which is non-trivial
since Fix(G) is empty. This shows N is not weakly co-amenable.

The proofs of (iii), (iv), (v) and (vi) are similar verifications, and we leave them to
the reader. �

Remark 5.8. As for co-amenability, it is natural to wonder whether weak co-amenability
of K in G implies weak co-amenability of K in H. In view of (ii), the same counter-
examples given in [59] show that the answer is negative in general.

By the correspondence between irreducible convex compactG-spaces andG-boundaries,
weak co-amenability admits the following characterization:
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Proposition 5.9. A subgroup H ≤ G is weakly co-amenable in G if and only if for
every non-trivial G-boundary X, there is no probability measure on X that is fixed by
H.

Proof. Follows from Theorem 2.1. �

The following shows how weak co-amenability naturally appears for boundary in-
divisible groups (see also Proposition 6.17).

Proposition 5.10. Let G be a boundary indivisible locally compact group, and L a
closed subgroup of G that is boundary-minimal and uniformly recurrent. Then L is
weakly co-amenable in G.

Proof. Write H for the closure of LG in Sub(G), which is a URS by assumption. Let
X be a non-trivial G-boundary on which L acts minimally, and let Y be a G-boundary
on which L fixes a probability measure. We have to show that Y is trivial. Since
H fixes a point in Prob(Y ) and the G-action on Prob(Y ) is strongly proximal by
Theorem 2.1, H fixes a point in Y by Lemma 3.13. So there exists y ∈ Y such that
L ≤ Gy, and it follows that Gy acts minimally on X. Therefore by Lemma 3.8 X
and Y are disjoint, and since X is non-trivial and G is boundary indivisible, this is
possible only if Y is trivial. �

5.3. The proof of Theorem 1.2. In this paragraph we shall give the proof of
Theorem 1.2 from the introduction. We will make use of the following result.

Proposition 5.11 (Furstenberg). Let G be a locally compact group, H ≤ G a closed
subgroup of finite covolume, and X a G-boundary. Then X is a H-boundary.

For completeness we repeat the argument from [32, Prop. 4.4].

Proof. Write Q = Prob(X), and consider a closed H-invariant subspace Q′ ⊆ Q. We
have to show that X ⊆ Q′. The set

X =
{
(gH, µ) : µ ∈ g(Q′)

}
⊆ G/H ×Q

is a well-defined, closed, G-invariant subspace of G/H ×Q. Fix a G-invariant proba-
bility measure mG/H on G/H, and consider

Y =
{
ν ∈ Prob(X ) : p∗G/H(ν) = mG/H

}
,

where pG/H is the projection from G/H × Q onto the first factor, and p∗G/H is the
induced push-forward operator. Then Y is a closed (and hence compact) G-invariant
subspace of Prob(X ), and p∗Q : Y → Prob(Q) is continuous. So p∗Q(Y ) is closed
in Prob(Q), and by strong proximality of the G-action on Q (Theorem 2.1), p∗Q(Y )
must intersect Q. Now X being the unique minimal closed G-invariant subspace of
Q, one has X ⊆ p∗Q(Y ). For every x ∈ X, we therefore have νx ∈ Prob(X ) such that
p∗G/H(νx) = mG/H and p∗Q(νx) = δx. This implies mG/H {gH : x ∈ g(Q′)} = 1 for
every x, and it easily follows that X ⊆ Q′. �

Remark 5.12. In the case when H is cocompact in G, strong proximality of the
action of H on X also follows from [37, II.3.1] applied to the action on Prob(X);
and minimality follows [37, IV.5.1] from disjointness of the G-spaces G/H and X [37,
III.6.1].
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Theorem 5.13. Assume that H admits an amenable URS H that comes from an
extremely proximal action, and such that Env(H) is co-amenable in H. Let G be a
locally compact group containing H as a closed subgroup of finite covolume. Then:

(a) G is boundary indivisible.
(b) More generally if L is a locally compact group such that there is a sequence a

topological group homomorphisms G = G0 → G1 → . . . → Gn = L such that
either Gi → Gi+1 has dense image, or Gi → Gi+1 is an embedding of Gi as a
closed subgroup of finite covolume in Gi+1; then L is boundary indivisible.

In particular whenever G maps continuously and with dense image to a product
G1 ×G2, one factor Gi must be amenable.
Proof. SinceH is amenable, H comes from an extremely proximal action, and Env(H)
is co-amenable inH, the groupH is boundary indivisible by Proposition 3.24. Now by
Proposition 5.11, the property of being boundary indivisible is inherited from closed
subgroups of finite covolume. Indeed if X,Y are disjoint G-boundaries, i.e. X × Y
is a G-boundary, then X × Y is also a boundary for H by Proposition 5.11, hence
of X or Y must be trivial since H is boundary indivisible. This shows (a). Since
boundary indivisibility passes to dense continuous images, and is inherited from closed
subgroups of finite covolume, (b) follows from (a).

Finally if G1, G2 are as in the last statement and Xi = ∂spGi, then X1 ×X2 is a
boundary for G1 ×G2, which is boundary indivisible by the previous paragraph. So
one factor Xi must be trivial, which exactly means that Gi is amenable by Theorem
2.2. �

Remark 5.14. In the proof of Theorem 5.13 we obtain that G is boundary indivisible
from the same property for H, which is itself deduced from Proposition 3.24 (which in
turn relies notably on Proposition 3.9). We note that the order in which the argument
is developed seems to matter, in the sense that the arguments applied to H do not
seem to be applicable directly to the group G. Indeed we do not know whether a
group G as in Theorem 5.13 falls into the setting of Proposition 3.9, i.e. we do not
know whether all non-trivial G-boundaries have the same stabilizer URS. We actually
believe this might be false in general.

We note at this point that the proof of Theorem 1.2 from the introduction is now
complete. Indeed the fact that a group G as in Theorem 1.2 is boundary indivisible
is Theorem 5.13. Statement (b) follows from Proposition 5.10, and statement (a)
follows from (b) together with Theorem 5.2.

The following remark explains a comment from the introduction.
Remark 5.15. Theorem 1.1 from [50] show that the countable groups G(F, F ′)
embed as lattices in a group G of the form G = N o Aut(Td), and under sertain
assumptions on the permutation groups F, F ′, all the assumptions of Theorem 1.2 are
satisfied (see Section 6). If M is a cocompact subgroup of Aut(Td) acting minimally
on ∂Td, then L = N oM is a cocompact (hence uniformly recurrent) subgroup of
G, and L is boundary-minimal in G since ∂Td is a G-boundary. However when M is
non-unimodular (e.g. if M is a non-ascending HNN-extension of a profinite group K
over open subgroups K1,K2 such that K1 and K2 do not have the same index in K),
then M is not co-amenable in Aut(Td), and L is not co-amenable in G. This shows
that the conclusion of statement (b) in Theorem 1.2 that L is weakly co-amenable in
G cannot be strengthened by saying that L is co-amenable in G.
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5.4. The proof of Theorem 1.1. Recall that if G is a topological group, the quasi-
center QZ(G) of G is the subgroup of G containing the elements g ∈ G having an
open centralizer. Note that QZ(G) contains the elements having a discrete conjugacy
class, so in particular it contains all discrete normal subgroups. Recall also that the
elliptic radical of G is the largest normal subgroup of G in which every compact
subset generates a relatively compact subgroup. It is a closed characteristic subgroup
of G.

The following is slightly more complete than Theorem 1.1 from the introduction.
Theorem 5.16. Let Γ be a countable group whose Furstenberg URS AΓ comes from
a faithful and extremely proximal action, and assume that Env(AΓ) is co-amenable in
Γ. Let G be a locally compact group containing Γ as a lattice. Consider the following
properties:

(a) Env(AΓ) is finitely generated;
(b) Env(AΓ) has finite index in Γ, and Γ admits a finitely generated subgroup

with finite centralizer;
(c) Env(AΓ) has finite index in Γ and Env(AΓ) has finite abelianization.

Then:
• (a), (b) both imply that G cannot be a product of two non-compact groups.
• (c) implies that any continuous morphism with dense image from G to a
product of locally compact groups G→ G1 ×G2 is such that one factor Gi is
compact.

Proof. Of course we may assume that Env(AΓ) is non-trivial, since otherwise there
is nothing to prove. According to Proposition 4.6 we have in particular that Γ is
monolithic, and Mon(Γ) = [Env(AΓ),Env(AΓ)]. For simplicity in all the proof we
write E = Env(AΓ) and M = Mon(Γ) = [E,E].

Assume that ϕ : G → G1 × G2 is continuous with dense image, and denote by
pi the projection G1 × G2 → Gi, i = 1, 2. We will show that one factor must
be compact. Upon modding out by the maximal compact normal subgroup of the
identity component G0, which intersects Γ trivially since Γ has no non-trivial finite
normal subgroup (Proposition 4.6), we may also assume that G0 has no non-trivial
compact normal subgroup. This implies in particular that G0 is a connected Lie
group [61].

By the assumption that E is co-amenable in Γ, we can apply Theorem 5.13, which
says that one factor, say G2, must be amenable. We then apply Corollary 4.13, which
tells us that the map p2 ◦ϕ is not injective in restriction to Γ. By definition of M we
deduce that M ≤ ϕ−1(G1 × 1).

Assume now that (c) holds. Then M , being of finite index in Γ, is a lattice in G,
and is contained in the closed normal subgroup ϕ−1(G1 × 1). Therefore we deduce
that ϕ−1(G1 × 1) is cocompact in G, and that p2 ◦ ϕ(G) is a compact subgroup of
G2. Since p2 ◦ ϕ(G) is also dense in G2, we have that G2 is compact.

We now have to deal with (a), (b), in which case ϕ is the identity and G = G1×G2.
Without loss of generality, we may assume that the projections pi(Γ) are dense. The
proofs of the two cases will share a common mechanism, given by the following easy
fact:
Lemma 5.17. If there exists a subgroup L ≤ G whose centralizer CG(L) contains
G2, CG(L) is open in G, and CG(L) ∩ Γ is finite, then G2 is compact.
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Indeed, since Γ must intersect an open subgroup O ≤ G along a lattice of O, it
follows that CG(L) is compact, and a fortiori so is G2.

We start with case (a). Note that Γ cannot embed in the group Aut(G0
1) (Proposi-

tion 4.10), and hence the subgroupM centralizes G0
1. The subgroupM∩G0

1 is normal
in Γ and cannot be equal to M (otherwise M would be abelian), so M ∩ G0

1 = 1.
Consider H1 = p1(E), which is normal in G1 by density of p1(Γ). Note that H1 is
compactly generated in view of the assumption that E is finitely generated. Since
M = [E,E], the group H1/M is abelian, and therefore of the form Zn × Rm × C for
some compact group C [41, Th. 9.8]. It follows that the group Q1 = H1/H

0
1 admits a

discrete cocompact normal subgroup ∆, which is an extension of M by a free abelian
group. Being characteristically simple and non-amenable, the group M has trivial
elliptic radical, so the group ∆ also has trivial elliptic radical. Now since Q1 is com-
pactly generated, there is a compact open normal subgroup K of Q1 such that Ko∆
has finite index in Q1 (see e.g. [1, Lem. 4.4]), so we deduce that Q1 has a compact
open elliptic radical. Since any connected group has compact elliptic radical [61], we
deduce that H1 has a compact elliptic radical R, and H1/R is discrete-by-connected.
The compact group R is also normal in G, and therefore we can mod out by R and
assume that R is trivial, so that H0

1 is open in H1. Since H0
1 centralizesM , any γ ∈ E

such that p1(γ) belongs to H0
1 centralizes M , and therefore is trivial by Proposition

4.6. Therefore H0
1 is open in H1 and intersects the dense subgroup p1(E) trivially, so

it follows that H0
1 is trivial, and p1(E) is a discrete subgroup of G.

Observe that p1(E) is centralized by G2 and normalized by G1, and hence is normal
in G. Being a discrete normal subgroup of G, p1(E) therefore lies in the quasi-center
QZ(G). Since p1(E) is finitely generated, the centralizer of p1(E) in G is actually
open in G. Moreover the subgroup Γ ∩ CG(p1(E)) is normal in Γ since CG(p1(E)) is
normal in G, but clearly does not contain M , and hence is trivial by Proposition 4.6.
Therefore we can apply Lemma 5.17 with L = p1(E), and we obtain the conclusion.

We now deal with (b). Let Z be a minimal compact Γ-space on which the Γ-action
is faithful and extremely proximal and such that SΓ(Z) = AΓ. By Proposition 5.11
(actually an easy case of it) the action of E on Z is also minimal, and it is extremely
proximal by Lemma 2.5. Moreover the associated stabilizer URS remains equal to
AΓ, and is also the Furstenberg URS of E by Proposition 3.26. So E satisfies all the
assumptions of case (b) of the theorem, so it is enough to prove the result under the
additional assumption Γ = E. In this case we have M = [Γ,Γ] thanks to Proposition
4.6, so it follows that p2(Γ) is abelian. By density of the projection the group G2 is
also abelian, and hence G2 lies in the center of G. Therefore Γ is normalized by the
dense subgroup ΓG2, and it follows that Γ is normal in G. In particular Γ ≤ QZ(G),
and the conclusion follows by applying Lemma 5.17 with L a f.g. subgroup of Γ such
that CΓ(L) is finite. �

Remark 5.18. The conclusions of the theorem also hold for any group H that is
commensurable with G up to compact kernels (two groups G1, G2 are commensurable
up to compact kernels if there exist Ki ≤ Hi ≤ Gi such that Hi is open and of finite
index in Gi, Ki is a compact normal subgroup of Hi, and H1/K1 and H2/K2 are
isomorphic). The arguments follow the same lines, by observing that if H is a finite
index open subgroup of G andK a compact normal subgroup ofH, then the subgroup
Λ = Γ ∩H (which, as a finite index subgroup of Γ, necessarily contains M) embeds
as a lattice in H/K. We leave the details to the reader.
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6. Groups acting on trees

6.1. Amenable URS’s and groups acting on trees. In this paragraph T is a
locally finite tree, andH acts continuously on T by isometries. The assumption that T
is locally finite is not essential here, and the results admit appropriate generalizations
for non-locally finite trees (using the compactification from [60, Prop. 4.2]).

Recall that the H-action on T is minimal if there is no proper invariant subtree,
and of general type if H has no finite orbit in T ∪∂T . The following is well-known,
and essentially goes back to Tits [69] (see also [63] and Proposition 2.4 for details).
Proposition 6.1. If the action of H ≤ Aut(T ) is minimal and of general type, then
the action of H on ∂T is minimal and extremely proximal.

Theorem 5.13 therefore implies the following result:
Corollary 6.2. Let H ≤ Aut(T ) be a locally compact group whose action on T is
continuous, minimal and of general type. Assume that end stabilizers are amenable,
and the envelope of SH(∂T ) is co-amenable in H. Assume H embeds as a subgroup
of finite covolume in G. Then whenever G maps continuously and with dense image
to a product G1 ×G2, one factor Gi must be amenable.

The conclusion of Corollary 6.2 implies in particular that whenever H embeds in
G with finite covolume, then G cannot be a product of two non-amenable groups.
The following example, which is largely inspired from [14, Ex. II.8], shows that the
group G can nonetheless be a product of two non-compact groups.
Example 6.3. Let k = Fp((t)) be the field of Laurent series over the finite field Fp,
and let α ∈ Aut(k) be a non-trivial automorphism of k. The group L = SL(2,k)
acts on a (p + 1)-regular tree, 2-transitively and with amenable stabilizers on the
boundary. This action extends to a continuous action of H = L oα Z, so that H
satisfies all the assumptions of Corollary 6.2. Nevertheless H embeds diagonally in
the product G = (LoAut(k))×Z as a closed subgroup of finite covolume since G/H
is compact and H and G are unimodular.

We will need the following fact. If A is a subtree of T , by the fixator of A we mean
the subgroup fixing pointwise A.
Proposition 6.4. Let Γ ≤ Aut(T ) be a countable group whose action on T is minimal
and of general type, and such that end-stabilizers in Γ are amenable. Then AΓ =
SΓ(∂T ), and Env(AΓ) is the subgroup generated by fixators of half-trees.
Proof. Since the Γ-action on ∂T is extremely proximal, it is also strongly proximal
by Theorem 2.3. So ∂T is a Γ-boundary with amenable stabilizers, and we deduce
that AΓ = SΓ(∂T ) by Proposition 3.25.

Now according to Lemma 3.7, the subgroup Env(SΓ(∂T )) = Env(AΓ) is generated
by the elements γ ∈ Γ whose fixed point set in ∂T has non-empty interior. Since
half-trees form a basis of the topology in ∂T , the statement follows. �

Before going to the proof of Corollary 1.3, we make the following observation:
Remark 6.5. For Γ acting on T (action minimal and general type) such that the
action on ∂T is not topologically free, virtual simplicity of Γ is equivalent to Γ0 being
of finite index in Γ and Γ0 having finite abelianization, where Γ0 is the subgroup
generated by fixators of half-trees. See statement (e) of Proposition 4.6.
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Proof of Corollary 1.3. In view of Proposition 6.4, the assumptions on Γ imply that
the Furstenberg URS of Γ comes from a faithful extremely proximal action. The
fact that end-stabilizers are all non-trivial means that the action of Γ on ∂T is not
topologically free, and by the above observation virtual simplicity of Γ is equivalent
to Env(AΓ) being of finite index in Γ and with finite abelianization. The first state-
ment of the corollary therefore follows from Theorem 5.16, case (c), and the second
statement from Theorem 1.2. �

6.2. Groups with prescribed local action. In the next paragraphs we will il-
lustrate the results of the previous sections on a family of groups acting on trees,
which contains instances of discrete and non-discrete groups. The purpose of this
paragraph is to recall the definition and give a brief description of known properties
of these groups.

We will denote by Ω a set of cardinality d ≥ 3 and by Td a d-regular tree. The
vertex set and edge set of Td will be denoted respectively Vd and Ed. We fix a coloring
c : Ed → Ω such that neighbouring edges have different colors. For every g ∈ Aut(Td)
and every v ∈ Vd, the action of g on the star around v gives rise to a permutation of
Ω, denoted σ(g, v), and called the local permutation of g at v. These permutations
satisfy the identity
(1) σ(gh, v) = σ(g, hv)σ(h, v)
for every g, h ∈ Aut(Td) and v ∈ Vd.

Given a permutation group F ≤ Sym(Ω), the group U(F ) introduced by Burger
and Mozes in [10] is the group of automorphisms g ∈ Aut(Td) such that σ(g, v) ∈ F
for all v. It is a closed cocompact subgroup of Aut(Td).

Definition 6.6. Given F ≤ F ′ ≤ Sym(Ω), we denote by G(F, F ′) the group of
automorphisms g ∈ Aut(Td) such that σ(g, v) ∈ F ′ for all v and σ(g, v) ∈ F for all
but finitely many v.

That G(F, F ′) is indeed a subgroup of Aut(Td) follows from (1), and we note that
we have U(F ) ≤ G(F, F ′) ≤ U(F ′). We make the following observation for future
reference.

Remark 6.7. As it follows from the definition, any element γ ∈ G(F, F ′) fixing an
edge e can be (uniquely) written as γ = γ1γ2, where each γi belongs to G(F, F ′) and
fixes one of the two half-trees defined by e.

We recall that a permutation group is semi-regular if it acts freely, and regular
if it acts freely and transitively. In the sequel we always assume that F ′ preserves the
F -orbits in Ω (this property ensures that the local action is indeed isomorphic to F ′,
see [48, Lem. 3.3]). The groups G(F, F ′) satisfy the following properties (see [48]):

(1) The group G(F, F ′) is dense in the locally compact group U(F ′). In particular
G(F,Sym(Ω)) is a dense subgroup of Aut(Td).

(2) G(F, F ′) admits a locally compact group topology (defined by requiring that
the inclusion of U(F ) is continuous and open), and the action of G(F, F ′)
on Td is continuous but not proper as soon as F 6= F ′. Endowed with this
topology, the group G(F, F ′) is compactly generated.

(3) stabilizers of vertices and stabilizers of ends inG(F, F ′) are respectively locally
elliptic and (locally elliptic)-by-cyclic. In particular they are amenable.
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(4) G(F, F ′) is a discrete group if and only if F is semi-regular. When this is so,
the group G(F, F ′) is therefore a finitely generated group, and stabilizers of
vertices and stabilizers of ends in G(F, F ′) are respectively locally finite and
(locally finite)-by-cyclic.

When F is semi-regular and F 6= F ′, the groups G(F, F ′) are instances of groups
obtained from a more general construction described in [49, Sec. 4] (more precisely,
a variation of it), which provides discrete groups with a continuous Furstenberg URS
(the later being the stabilizer URS associated to the action on the boundary of the
tree on which these groups act). In the particular case of the groups G(F, F ′), the
Furstenberg URS can be explicitly described, see Proposition 4.28 and Corollary 4.29
in [51].

In the sequel whenever we use letters F and F ′, we will always mean that F, F ′
are permutation groups on a set Ω, that F ′ contains F and preserves the F -orbits in
Ω. Following [69], we will denote by G(F, F ′)+ the subgroup of G(F, F ′) generated by
fixators of edges, and by G(F, F ′)∗ the subgroup of index two in G(F, F ′) preserving
the bipartition of Td.

The following result, also obtained in [17, Prop. 9.16], supplements simplicity re-
sults obtained in [48], where the index of the simple subgroup was found explicitly
under appropriate assumptions on the permutation groups.

Proposition 6.8. The group G(F, F ′) has a simple subgroup of finite index if and
only if F is transitive and F ′ is generated by its point stabilizers.

Proof. These conditions are necessary by [48, Prop. 4.7]. Conversely, assume F tran-
sitive and F ′ generated by its point stabilizers. By [48, Prop. 4.7] again, G(F, F ′)+

has index two in G(F, F ′), so in particular it is compactly generated. If M is the
monolith of G(F, F ′), which is simple and open in G(F, F ′) by [48, Cor. 4.9], we
have to show M has finite index. According to Remark 6.7, G(F, F ′)+ is also the
subgroup generated by fixators of half-trees, and therefore by Proposition 4.6 M is
the commutator subgroup of G(F, F ′)+. The abelianization of G(F, F ′)+ is there-
fore a finitely generated abelian group, which is generated by torsion elements since
G(F, F ′)+ is generated by locally elliptic subgroups (fixators of edges). Therefore this
abelianization is finite, and it follows that M has finite index in G(F, F ′). �

6.3. Boundaries of G(F, F ′). In this paragraph we use results from the previous
sections in order to study the boundaries of the discrete groups G(F, F ′). The fol-
lowing result shows that several properties of the set of boundaries are governed by
the permutation groups, and that rigidity phenomena occur under mild conditions of
the permutation groups.

Theorem 6.9. Assume that F is semi-regular, F 6= F ′, and write Γ = G(F, F ′). The
following are equivalent:

(i) The subgroup of F ′ generated by its point stabilizers has at most two orbits in
Ω.

(ii) Γ/Env(AΓ) is isomorphic to one of C2, D∞ or D∞ o C2.
(iii) Env(AΓ) is co-amenable in Γ.
(iv) SΓ(X) = AΓ for every non-trivial Γ-boundary X.
(v) Γ is boundary indivisible.
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We will need preliminary results before proving Theorem 6.9.

Lemma 6.10. Assume that F is semi-regular. The envelope of the Furstenberg URS
of G(F, F ′) is equal to G(F, F ′)+.

Proof. Write Γ = G(F, F ′) and Γ+ = G(F, F ′)+. According to Proposition 6.4,
Env(AΓ) is the subgroup generated by fixators of half-trees in Γ. Therefore the
inclusion Env(AΓ) ≤ Γ+ is clear. The converse inclusion also holds true by Remark
6.7, so equality follows. �

In view of Lemma 6.10 and Proposition 3.24, we are led to consider the quotient
G(F, F ′)/G(F, F ′)+, and in particular study when it is amenable. To this end, we
will denote by F ′+ the subgroup of F ′ generated by its point stabilizers, and write
D = F ′/F ′+. Since F ′+ is normal in F ′, we have an action of F ′ on the set of orbits
of F ′+, which factors through a free action of D.

Proposition 6.11. The group Q = G(F, F ′)∗/G(F, F ′)+ is isomorphic to the group
U(D)∗, where D = F ′/F ′+ is viewed as a semi-regular permutation group on the set
of orbits of F ′+ in Ω. If moreover F is transitive, one has Q = D ∗D.

Proof. We let O1, . . . , Or ⊆ Ω be the orbits of F ′+, and we will freely identify the set
of orbits with the integers {1, . . . , r}. For every a ∈ Ω, there is a unique i ∈ {1, . . . , r}
such that a ∈ Oi, and we denote i = ia.

We view the tree Td as the Cayley graph of the free Coxeter group of rank d, namely
the group defined by generators x1, . . . , xd and relators x2

j = 1 for all j. When adding
relations of the form xa = xb whenever ia = ib (i.e. a and b are in the same F ′+-orbit),
we obtain a free Coxeter group of rank r. It has a Cayley graph that is a regular tree
of degree r, and we have a surjective map p : Td → Tr.

Two elements v, w ∈ ∗dC2 = 〈x1, . . . , xd〉 have the same image in ∗rC2 if and only
if one can write w = v

∏
wjxajxbj

w−1
j for some words wj and colors aj , bj such that

iaj = ibj
. Since the inverse of wj is equal to the word obtained from wj by reversing

the order, we have:

Lemma 6.12. Two vertices v, w of Td have the same projection in Tr if and only if
the distance between v and w is even, say d(v, w) = 2m, and if (a1, . . . , a2m) is the
sequence of colors of the unique geodesic from v to w, then the word (ia1 , . . . , ia2m) is
a concatenation of palindromes of even length.

Lemma 6.13. For every g ∈ G(F, F ′) and every vertex v on Td, the image of σ(g, v)
in D = F ′/F ′+ does not depend on v. We denote by σg ∈ D the corresponding
element, which is trivial when g ∈ G(F, F ′)+.

Proof. If v, w are adjacent vertices and a is the color of the edge between them, then
σ(g, v)(a) = σ(g, w)(a). So σ(g, v)σ(g, w)−1 ∈ F ′+. The first statement follows by
connectedness. The fact that σg is trivial on G(F, F ′)+ is then clear because g 7→ σg is
a morphism according to the first statement, which vanishes on fixators of edges. �

Note that the set of edges of Tr inherits a natural coloring by the integers 1, . . . , r.

Lemma 6.14. There is a natural morphism ϕ : G(F, F ′) → Aut(Tr) such that
ker(ϕ) = G(F, F ′)+ and Im(ϕ) = U(D).
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Proof. We shall first define an action of G(F, F ′) on the set of vertices of Tr. Let
g ∈ G(F, F ′). Let v, w be two vertices of Td, and (a1, . . . , an) be the sequence of
colors from v to w. If v = v1, . . . , vn+1 = w are the vertices between v and w, then
the sequence of colors from g(v) to g(w) is (σ(g, v1)(a1), . . . , σ(g, vn)(an)). If σg is the
element defined in Lemma 6.13, then one has iσ(g,vj)(aj) = σg(iaj ) for all j = 1, . . . , n.
This shows in particular that if v, w satisfy the condition of Lemma 6.12, then the
same holds for g(v) and g(w). This means that for every vertex x of Tr, the formula

(2) ϕ(g)(x) := p(gx̃),

where x̃ is any vertex of Td such that p(x̃) = x, is a well-defined action of G(F, F ′)
on Tr. The fact that the tree structure is preserved is clear. Note that for every
g ∈ G(F, F ′), all the local permutations of ϕ(g) are equal to σg: for every vertex x of
Tr, one has σ(ϕ(g), x) = σg. In particular the image of ϕ lies inside U(D).

We shall prove that ker(ϕ) = G(F, F ′)+. Let g ∈ G(F, F ′) fixing an edge in Td.
Then ϕ(g) also fixes an edge of Tr by (2). Moreover one has σg = 1 (Lemma 6.13),
and it follows from the previous paragraph that all local permutations of ϕ(g) are
trivial. This implies g ∈ ker(ϕ). Conversely, we let g be an element of ker(ϕ), and we
prove that g ∈ G(F, F ′)+. Note that since ϕ(g) is trivial, one has σg = 1, i.e. all local
permutations of g are in F ′+. Now let v be any vertex. By Lemma 6.12, the sequence
of colors (a1, . . . , a2n) from v to g(v) gives rise to a sequence (ia1 , . . . , ia2n) that is a
concatenation of palindromes. For simplicity we treat the case where (ia1 , . . . , ia2n)
is a palindrome; the general case consists in repeating the argument for this case.
Let v = v1, . . . , v2n+1 = g(v) be the vertices between v and g(v) (note that vn is
the midpoint between v and g(v)). Since (ia1 , . . . , ia2n) is a palindrome, one easily
checks that there are elements g1, . . . , gn such that gj belongs to the stabilizer of vj in
G(F, F ′+) and g′ = g1 . . . gng fixes the vertex v (this is obtained by successively folding
the geodesic [v, g(v)] onto itself starting from its midpoint in order to bring back g(v)
to v with g1 . . . gn). We now invoke the following easy fact, whose verification is left
to the reader.

Lemma 6.15. Let γ ∈ G(F, F ′) fixing a vertex w, and such that σ(γ,w) ∈ F ′+.
Then γ ∈ G(F, F ′)+.

We apply Lemma 6.15 to g′ and all gj ’s, and deduce that g = g−1
n . . . g−1

1 g′ belongs
to G(F, F ′)+ as desired.

The last thing that remains to be proved in the statement of Lemma 6.14 is that
the image of ϕ is equal to U(D). The fact that ϕ(g) always belongs to U(D) has
already been observed. For the converse inclusion, observe that since G(F, F ′) acts
transitively on the vertices of Tr (as it is already the case on Td), it is enough to check
that the image of ϕ contains U(D)x for some vertex x of Tr. Now since D acts freely
on {1, . . . , r}, the map U(D)x → D, γ 7→ σ(γ, x), is an isomorphism. Therefore it is
enough to see that any action on the star around x on Tr can realized by an element
of G(F, F ′), and this is indeed the case (see e.g. Lemma 3.4 in [48]). �

To finish the proof of the proposition, remark that the image of G(F, F ′)∗ by ϕ is
precisely U(D)∗. When F is transitive then D is also transitive, so that U(D)∗ has
two orbits of vertices and one orbit of edges, and therefore splits as the free product
D ∗D. �
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Remark 6.16. The case F = F ′ is allowed in Proposition 6.11, so that the conclusion
also holds for the groups U(F ) from [10].

Proposition 6.11 naturally leads us to isolate the following three situations. We
keep the previous notation, so that r is the number of orbits of F ′+ in Ω, D = F ′/F ′+

and Q = G(F, F ′)∗/G(F, F ′)+:
(1) r = 1. In this case Tr is a segment of length one, and D and Q are trivial.
(2) r = 2. Tr is a bi-infinite line, and this case splits into two disjoint sub-cases:

(a) If F ′ is intransitive then D is trivial, and Q = U(1)∗ = Z (generated by a
translation of Tr of length 2).

(b) If F ′ is transitive then we have D = Sym(2) and Q = D ∗D = D∞.
(3) r ≥ 3. Then Q = U(D)∗ is a virtually free group (since it acts vertex transitively

and with trivial edge stabilizers of Tr).
Theorem 6.9 says that all properties stated there hold true if and only if r ∈ {1, 2}.

A sufficient condition for having r = 1 is for instance that F acts transitively on Ω,
F 6= F ′ and F ′ acts primitively, or quasi-primitively on Ω. Recall that a permutation
group is quasi-primitive if every non-trivial normal subgroup acts transitively.

But Theorem 6.9 also applies beyond the case of quasi-primitive permutation
groups. For example a situation giving rise to case (2) (a) is when F ′ has a fixed
point and acts transitively on the complement. Examples giving rise to case (2) (b)
are for instance obtained by taking F ′ = Sym(n) oC2 = Sym(n) o 〈τ〉 acting naturally
on 2n letters, and F the subgroup generated by ((cn, cn), 1) and ((1, 1), τ), where cn
is a cycle of order n.

Proof of Theorem 6.9. (i)⇒ (ii) follows from Lemma 6.10 and Proposition 6.11 (and
the discussion following its proof). (ii) ⇒ (iii) is clear. (iii) ⇒ (iv) is Proposition
3.24. (iv)⇒ (v) is guaranteed by Proposition 3.9 and the fact that AΓ is not a point.
Finally assume that (i) does not hold, i.e. F ′+ has at least three orbits in Ω, and
write Γ+ = G(F, F ′)+. By Proposition 6.11, the group Q = Γ/Γ+ has a subgroup of
finite index that is free of rank at least 2. So there exist non-trivial Q-boundaries,
and a fortiori these are non-trivial Γ-boundaries. If X is such a boundary, then Γ+

acts trivially on X. Since Γ+ also acts minimally on ∂Td, it follows that X and ∂Td
are disjoint Γ-boundaries, contradicting (v). Therefore property (v) implies property
(i), and the proof is complete. �

6.4. Weakly co-amenable subgroups. In this paragraph we show that subgroups
of the groups G(F, F ′) satisfy the following dichotomy:

Proposition 6.17. Assume that F is regular and F ′ is primitive. Then any subgroup
of G(F, F ′) is either (locally finite)-by-cyclic (and hence amenable) or weakly co-
amenable.

We will need the following lemma.

Lemma 6.18. Assume that F ′ acts primitively on Ω, and take two subgroups H1 6=
H2 in the Furstenberg URS of G(F, F ′). Then 〈H1, H2〉 = G(F, F ′)∗.

Proof. Write Γ = G(F, F ′). Recall from [51, Prop. 4.28] that the Furstenberg URS of
Γ consists of subgroups Γ0

ξ , ξ ∈ ∂Td, where Γ0
ξ is the set of elements acting trivially

on a neighbourhood of ξ. Given ξ 6= η ∈ ∂Td, we show that the subgroup Λ generated
by Γ0

ξ and Γ0
η must be equal to G(F, F ′)∗.
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Take a vertex v on the geodesic from ξ to η, let e1, e2 be the edges containing v and
pointing towards ξ and η, and a, b the colors of e1, e2. Denote by K(v) the subgroup
of Γ consisting of elements γ fixing v and such that σ(γ,w) ∈ F for every w 6= v.
Since F ′ is primitive, F ′ is generated by the point stabilizers F ′a and F ′b. This implies
that every element of K(v) may be written as a product of elements fixing either the
half-tree defined by e1 containing ξ, or the half-tree defined by e2 containing η, so
that K(v) ≤ Λ. Since v was arbitrary, we also have K(v′) ≤ Λ for v′ a neighbour of v
on the geodesic [ξ, η]. The conclusion now follows since for two neighbouring vertices
v, v′, the subgroups K(v),K(v′) always generate G(F, F ′)∗ [48, Cor. 3.10]. �

Proof of Proposition 6.17. Write Γ = G(F, F ′), and let Λ be a subgroup of Γ that is
non-amenable, equivalently whose action of Td is of general type. By Proposition 5.9
we have to show that Λ fixes no probability measure on any non-trivial Γ-boundary.
Argue by contradiction and assume that X is a non-trivial Γ-boundary on which Λ
fixes a probability measure µ. According to Theorem 6.9, we have SΓ(X) = AΓ.
Therefore by Proposition 3.2 there exist an almost 1-1 extension η : X̃ → X and a
factor map π : X̃ → AΓ.

Let Q ⊂ Prob(X̃) be the set of ν such that η∗ν = µ, and write R = π∗(Q),
which is a closed Λ-invariant subset of Prob(AΓ). Since the action of Λ on ∂Td is
strongly proximal and since AΓ is a factor of ∂Td [51, Prop. 2.10-4.28], we deduce
that R contains some Dirac measures. Let H ∈ AΓ such that there is ν ∈ Prob(X̃)
with η∗ν = µ and π∗ν = δH . Such a measure ν must be supported in the set of
(x,H) ∈ X̃, and it follows that µ is supported in the set of H-fixed points in X
(because (x,H) ∈ X̃ implies that H ≤ Gx by upper semi-continuity of the stabilizer
map). But since Λ does not fix any point in AΓ, we may find another H ′ ∈ AΓ such
that δH′ ∈ R, so that the same argument shows that H ′ also acts trivially on the
support of µ. By Lemma 6.18 the subgroups H,H ′ generate G(F, F ′)∗, which is of
index two in Γ. Therefore any point in the support of µ has a Γ-orbit of cardinality
at most two, which is absurd since Γ acts minimally on X and X is non-trivial by
assumption. �

Remark 6.19. Assume that F is regular and F ′ is primitive, and write Γ = G(F, F ′).
Let Λ ≤ Γ be a subgroup generated by two hyperbolic elements with sufficiently far
apart axis. Then Λ is not co-amenable in Γ (see e.g. the argument in the proof of
Theorem 2.4 in [13]), but Λ is weakly co-amenable in Γ by Proposition 6.17.

Remark 6.20. Wemention that when F ′ is primitive, following the proof of Corollary
4.14 from [51] (with minor modifications), one could prove that every non-trivial
G(F, F ′)-boundary factors onto ∂Td. This would provide an alternative proof of
Proposition 6.17.

6.5. Lattice embeddings of the groups G(F, F ′). In this section we apply previ-
ous results of the article to the family of groups G(F, F ′) and deduce some properties
of general locally compact groups containing a group G(F, F ′) as a lattice.

Remark 6.21. As mentioned earlier, examples of lattice embeddings for the groups
G(F, F ′) are described in [50], and maybe it is worth pointing out that instances of
lattice embeddings of these groups also appeared in [48]. Indeed under appropriate
assumptions on permutation groups F ≤ F ′, H ≤ H ′, the inclusion of G(F, F ′) in
G(H,H ′) has discrete and cocompact image [48, Cor. 7.4].
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Corollary 6.22. Assume that F is regular, and that F ′ is generated by its point
stabilizers. Let G be a locally compact group containing G(F, F ′) as a lattice. Then
the conclusions of Corollary 1.3 hold.

Proof. The assumptions on F, F ′ imply that G(F, F ′) is virtually simple by Proposi-
tion 6.8, so Corollary 1.3 applies. �

Remark 6.23. In the setting of Corollary 6.22, although G(F, F ′) cannot be a lattice
in a product, it happens that there exist non-discrete groupsG1, G2 such thatG(F, F ′)
embeds as a discrete subgroup of G1×G2 with injective and dense projection to each
factor. For instance if F1, F2 are permutation groups such that F � Fi ≤ F ′ and
we set Gi = G(Fi, F ′), then the diagonal embedding of G(F, F ′) in G1 ×G2 has this
property as soon as F1 ∩ F2 = F . See [48, Lem. 3.4 and §7.1].
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