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CHAPTER 1

Subgroup dynamics, topological dynamics of non-free
actions

In this chapter we present results from [LBMB18, LBMB23], joint work with
Nicolás Matte Bon, and from [CLBMB22], joint work with Pierre-Emmanuel Caprace
and Nicolás Matte Bon. The reader is invited to consult Appendix A and Appendix
B before reading the present chapter.

1. Uniformly recurrent subgroups, confined subgroups

Let G be a locally compact group. We denote by Sub(G) the space of closed
subgroups of G. Equipped with the Chabauty topology, Sub(G) is a compact space.
The group G acts by conjugation on Sub(G).

Definition 1.1 ([GW15]). A uniformly recurrent subgroup (URS) of G is
a minimal closed non-empty G-invariant subset of Sub(G).

URS’s appear when considering point stabilizers for minimal actions on compact
spaces. Let X be a minimal compact G-space. For x ∈ X, let Gx denote the stabilizer
of x. The G-equivariant map Stab : X → Sub(G), x 7→ Gx, is called the stabilizer
map. The map Stab is not continuous in general. When G is a discrete group, the
points where Stab is continuous are the points x ∈ X such that Gx = G0

x, where
G0

x is the neighbourhood stabilizer of x in G (§1.1 in Appendix A). See e.g. [Nek22,
Proposition 2.1.28].

However the map Stab is always upper semi-continuous. Proposition A.1 therefore
yields:

Proposition 1.2 (Stabilizer URS, [GW15]). If X is a minimal compact G-space,
then

Stab(X) = {Gx : x ∈ X}
contains a unique URS. This URS is denoted SG(X), and is called the stabilizer URS
associated to X. When G is second countable, the subset X0 ⊂ X consisting of points
where Stab is continuous is dense in X, and

SG(X) = {Gx : x ∈ X0}.

So the proposition associates a URS of G to every minimal compact G-space.
Conversely, Matte Bon and Tsankov, and Elek in the case of finitely generated discrete
groups, showed that every URS of G can be obtained as the stabilizer URS associated
to a minimal compact G-space [MBT20], [Ele18].

The action of G on X is topologically free if SG(X) is the trivial URS. By the
trivial URS we mean the singleton {{1}} made of the trivial subgroup. For G second
countable, this amounts to say that there is a dense set of points in X with trivial
stabilizer. When the group G is discrete, the action is topologically free if and only if

11



12 1. SUBGROUP DYNAMICS, TOPOLOGICAL DYNAMICS OF NON-FREE ACTIONS

G0
x is trivial for every x ∈ X (equivalently, the only element of G whose set of fixed

points in X has non-empty interior is the identity).
Closely related to the notion of URS is the notion of confined subgroups:

Definition 1.3. A closed subgroup H of G is confined if the closure of the
G-orbit of H in Sub(G) does not contain the trivial subgroup.

The sets {H ∈ Sub(G) |H ∩K = ∅}, when K ranges over compact subsets of G
such that 1 /∈ K, form a basis of neighbourhoods of the trivial subgroup in Sub(G).
Hence H is confined means there exists a compact subset K such that 1 /∈ K and
K ∩ gHg−1 6= ∅ for every g ∈ G. Note that any subgroup containing a confined
subgroup is itself confined. If H is confined, by Zorn’s lemma the closure of the G-
orbit of H in Sub(G) contains a URS, that is necessarily non-trivial. Conversely if
H ⊂ Sub(G) is a non-trivial URS, then every H ∈ H is confined.

Everywhere in Chapter 1 except in Section 5, the group G will be discrete. In
that case a subgroup H is confined if there exists a finite subset P of non-trivial
elements of G such that gHg−1 ∩ P 6= ∅ for every g ∈ G. When G is a finitely
generated group, this admits an interpretation in terms of Schreier graphs. If S is a
finite generating subset of G, the Schreier graph Γ(G,G/H) associated to a subgroup
H of G is the graph with vertex set G/H, and edges between gH and sgH for every
s ∈ S, g ∈ G. A subgroup H of G is not confined if and only if the Schreier graph
Γ(G,G/H) contains isomorphic copies (as labelled graphs) of arbitrarily large balls
of the Cayley graph of G (all graphs being taken with respect to S).

Outline of Chapter 1. One aspect of the study of confined subgroups and URS’s
is to aim towards rigidity results describing all confined subgroups or URS’s of G.
In a series of works, joint with Nicolás Matte Bon, we have established such results,
and developed applications of these, for discrete groups admitting a micro-supported
action [LBMB18, LBMB20, LBMB23, LBMB22a]. The purpose of Sections
2, 3 and 4 is to describe results from [LBMB18, LBMB23]. Section 5 describes
results from [CLBMB22], which deals with the study of relatively amenable confined
subgroups of non-discrete locally compact micro-supported groups.

2. Confined subgroups and URS’s of micro-supported groups

The following statement makes a connection, given a micro-supported group,
between the rigid stabilizers of the given micro-supported action and all confined
subgroups of G.

Theorem 1.4 ([LBMB18, LBMB23]). Let G be a discrete group admitting a
micro-supported action on a Hausdorff space X. If H is a confined subgroup of G,
then there exists a non-empty open subset U of X such that H contains RistG(U)′.

We make somes comments:
• Lemma B.2 asserts that if G is a group admitting a micro-supported action
of a Hausdorff space X and N is a non-trivial normal subgroup of G, then N
contains RistG(U)′ for some non-empty open subset U ⊂ X. Hence Theorem
1.4 can be seen as an extension of this basic fact on normal subgroups to the
setting of confined subgroups.
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• A version of Theorem 1.4 was first obtained in [LBMB18], with the weaker
conclusion that RistG(U)′ is a subquotient of H. The above stronger state-
ment was then later obtained in [LBMB23].
• In the setting of Invariant Random Subgroups (G-invariant probability mea-
sures on Sub(G)) – a topic on which we do not attempt to make a survey
here – the exact analogue of Theorem 1.4 was obtained by Zheng [Zhe19a].
Previous results on IRS’s for specific families of micro-supported groups had
been obtained notably by Dudko–Medynets and Thomas–Tucker-Drob. We
refer to [Zhe19a] for details and references.
• Theorem 1.4 is actually derived from a more constructive statement (Theo-
rem 3.21 in [LBMB23]), which has the advantage of being applicable outside
of the realm of micro-supported groups, and has other applications. In the
work [LBMB22a], we apply this result to a problem that admits a priori
no connection with confined subgroups, namely the study of highly transi-
tive actions. As an output, we obtain a criterion to rule out the existence of
highly transitive actions, as well as a tool to classify highly transitive actions.
• Another application of (a consequence of) Theorem 1.4 is derived and used
as tool in the main result of [LBMB20].

Theorem 1.4 is therefore a tool to study confined subgroups and URS’s of micro-
supported groups. Under additional assumptions on the G-action on X, the following
statement provides a criterion ensuring that the only URS of G, except {{1}} and {G},
is the natural one, i.e. the stabilizer URS (Proposition 1.2) associated to the minimal
micro-supported action from which G is given.

Theorem 1.5 ([LBMB18]). Let G be a discrete group admitting a micro-supported
action on a compact space X that is minimal and extremely proximal. Assume that:

(i) There is a basis for the topology consisting of open subsets U of X such that
the rigid stabilizer RistG(U) is perfect.

(ii) The subgroups G0
x, where x ranges over X, generate G.

Then the only URS’s of G are {{1}}, {G} and the stabilizer URS SG(X) associated
to X.

Remark 1.6. Theorem 1.5 is proven in [LBMB18] under the assumption that
there exists H ∈ SG(X) such that H is a maximal subgroup of G. However by [LB21,
Proposition 3.17] this assumption can be replaced by the above assumption (ii).

Apart from specific situations where the group G is too small (for instance when
Sub(G) is countable), situations where we have a complete description of all URS’s
of G are rather rare, and even more if we stick to finitely generated groups G. Recent
results by Boutonnet–Houdayer [BH21] and Bader–Gelander–Levit [BGL24] solve
this problem for irreducible lattices in connected semisimple Lie groups with trivial
center and rank at least two: for such a group, every non-trivial URS (and more
generally every confined subgroup) is the conjugacy class of a finite index subgroup.

As an illustration, we obtain the following statement for Thompson’s groups F ,
T and V . For the groups T and V , this a direct application of Theorem 1.5, as their
defining micro-supported action can be shown to verify all requirements of Theorem
1.5. The case of the group F is slightly different, as the defining micro-supported
action of F (on the unit interval) is not minimal.



14 1. SUBGROUP DYNAMICS, TOPOLOGICAL DYNAMICS OF NON-FREE ACTIONS

Theorem 1.7 ([LBMB18]).
(i) The only URS’s of Thompson’s group F are the normal subgroups of F (these

are the subgroups containing the derived subgroup F ′).
(ii) The only URS’s of Thompson’s group T are {{1}}, {T}, and the stabilizer

URS associated to the action of T on the circle.
(iii) The only URS’s of Thompson’s group V are {{1}}, {V }, and the stabilizer

URS associated to the action of V on the binary Cantor space.

As another illustration, Theorem 1.5 also applies to the family of groups G(F, F ′)
acting on a tree Td with almost prescribed local action. Under certain assumptions on
the permutation groups F, F ′, the micro-supported action of G(F, F ′) on ∂Td verifies
the assumptions of Theorem 1.5. Examples of F, F ′ satisfying the conditions below
are F = 〈(1, . . . , d)〉 and F ′ = Alt(d) for d ≥ 7 odd.

Theorem 1.8 ([LBMB18]). Let d ≥ 3, and let F ≤ F ′ ≤ Sym(d) such that F
acts freely transitively, F ′ acts 2-transitively, and point stabilizers in F ′ are perfect.
Let G be the subgroup of index two of G(F, F ′) preserving the natural bipartition of
the vertex set of the regular tree Td. Then the only URS’s of G are {{1}}, {G} and
the stabilizer URS associated to the action of G on ∂Td.

3. Rigidity results for non topologically free actions

3.1. Extremely proximal micro-supported groups. Suppose the group G
is as in Theorem 1.5, and let be Y a minimal compact G-space. The stabilizer URS
SG(Y ) is therefore equal to either {{1}}, {G} or SG(X). The first case corresponds
to topologically free actions. Only the trivial G-space gives rise to the second case.
Hence all the non-trivial minimal compact G-spaces Y such that the G-action on Y
is not topologically free verify SG(Y ) = SG(X). Using this one shows the following
statement (whose conclusion is at the level of the G-spaces rather than the stabilizer
URS’s).

Theorem 1.9 ([LBMB18, LBMB23]). Let G be a discrete group admitting a
micro-supported action on a compact space X that is minimal and extremely proximal.
Assume that:

(i) There is a basis for the topology consisting of open subsets U of X such that
the rigid stabilizer RistG(U) is perfect.

(ii) For every x1 6= x2 ∈ X, the subgroups G0
x1 and G0

x2 generate G.
Let Y a non-trivial minimal compact G-space such that the G-action on Y is not
topologically free. Then Y admits X as a factor.

If G admits a minimal micro-supported action on a compact space X, then all
compact G-spaces on which the G-action is micro-supported admit a common highly
proximal extension (the Stone space of the Boolean algebra of regular open subsets of
X) [Rub96]. The difference here is that Theorem 1.9 applies to all minimal compact
G-spaces on which the G-action is not topologically free, and not only those that
are micro-supported. But already if we stick to micro-supported G-spaces, the above
theorem provides a kind of complement: while [Rub96] ensures that there always
exists a largest micro-supported G-space, Theorem 1.9 provides sufficient conditions
ensuring the existence of a smallest one.
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This statement applies for instance to Thompson’s groups T and V , as well as to
the groups G(F, F ′) when the parameters F, F ′ verify the assumptions of Theorem
1.8.

3.2. Weakly branch groups. Another situation in which we are able to say
something on all non topologically free actions, based on a result on URS’s, is the case
of weakly branch groups. The set of URS’s of a weakly branch group never admits
a simple description as in Theorem 1.5. Corollary 5.10 in [LBMB23] asserts that
every weakly branch group admits uncountably many distinct URS’s. Nevertheless,
a structure theorem on URS’s of weakly branch groups is obtained in [LBMB23],
which is again based on Theorem 1.4. That statement is a bit technical to be stated
here, but it has the following consequence. (If T is a locally finite rooted tree, when
saying that a subgroup G ≤ Aut(T ) is a weakly branch group we mean that the
G-action on ∂T is minimal and micro-supported.)

Theorem 1.10 ([LBMB23]). Let T be a locally finite rooted tree, and let G ≤
Aut(T ) be a weakly branch group. Let Y a minimal compact G-space such that the
G-action on Y is faithful and not topologically free. Then the following hold:

(1) For every y ∈ Y , the subgroup G0
y admits fixed points in ∂T .

(2) The map Ψ: Y → F(∂T ) which associates to y ∈ Y the set of fixed points in
∂T of G0

y, is continuous, G-equivariant, and the image of Ψ has cardinality
at least two.

(3) If G is finitely generated and the growth of the G-action on Y is polynomially
bounded, then the image of Ψ is infinite. (We refer to Section 1 of Chapter
2 for the definition of the growth of a G-action.)

The space F(∂T ) of closed subsets of ∂T , equipped with the Chabauty topology,
is a compact space, and the fact that the G-action on ∂T is profinite implies that
the G-action on F(∂T ) is also profinite ([LBMB23, Lemma 5.8]). Hence 2 implies
in particular that Y admits a non-trivial profinite G-space as a factor, and 3 implies
that Y admits an infinite profinite G-space as a factor.

Theorem 1.10 implies the following. To put into context, it is known that for every
countable group G with trivial FC-center, there exists a minimal compact G-space
on which the G-action is proximal and topologically free [GTWZ21].

Corollary 1.11 ([LBMB23]). Let G be a weakly branch group. Then every
minimal compact G-space on which the G-action is faithful and proximal is topologi-
cally free.

Conclusion 3 of Theorem 1.10 is used to show the following. See [Dah19] for
background on the group of interval exchange transformations.

Theorem 1.12 ([LBMB23]). If G is a finitely generated weakly branch group,
then G does not admit any faithful action on R/Z by interval exchange transforma-
tions.

Rigidity results on confined subgroups and URS’s as in Section 2 also lead to
lower bounds for the growth of all faithful actions of the group (a problem studied
in Chapter 2 for a different class of groups). See [MB18] for topological full groups,
and [LBMB23] for branch groups, as well as [LBMBS25] for free products.
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4. Amenable confined subgroups, G-boundaries, C∗-simplicity

A group G is C∗-simple if its reduced C∗-algebra is simple. This property can
be rephrased in terms of unitary representations: G is C∗-simple if and only if every
unitary representation of G that is weakly contained in the left-regular representation
λG is weakly equivalent to λG [Har07].

Theorem 1.13 ([KK17, Ken20]). Let G be a discrete group. The following
conditions are equivalent:

(i) The G-action on G on its Furstenberg boundary ∂FG is free.
(ii) There is a G-boundary on which the G-action is topologically free.
(iii) G does not have any amenable confined subgroup.
(iv) The only amenable URS of G is the trivial URS.
(v) G is C∗-simple.

Equivalence between conditions (i)-(ii)-(iii)-(iv) goes as follows. (i) =⇒ (ii) is
tautological. For (ii) =⇒ (iii), suppose for a contradiction that X is a G-boundary
on which the G-action is topologically free, and H is an amenable confined subgroup
of G. Since H is amenable, there is µ ∈ Prob(X) that is fixed by H. By strong
proximality, there is a net (gi) and x ∈ X such that giµ → δx. By compactness
one can assume that there is K ∈ Sub(G) such that giHg

−1
i → K, and by upper

semi-continuity of Stab we have that K fixes x. Since H is confined, so is K. And
since K ≤ Gx, so is Gx. Therefore the URS SG(X) is non-trivial. Contradiction.
(iii) =⇒ (iv) is consequence of definitions. (iv) =⇒ (i): point stabilizers for the
G-action on ∂FG are always amenable, hence (iv) implies that the G-action on ∂FG
is topologically free, and as observed in [BKKO17], it is a consequence of [Fro68]
that this happens only if the G-action on ∂FG is free.

The remarkable aspect of Theorem 1.13 is that those conditions (i)-(ii)-(iii)-(iv)
are also equivalent to (v). This has been originally proven by Kalantar–Kennedy
[KK17], establishing equivalence between (ii) and (v). The connection with amenable
confined subgroups has been made later by Kennedy [Ken20]. A subsequent result
of Breuillard–Kalantar–Kennedy–Ozawa characterizes groups with the unique trace
property as those with no non-trivial amenable normal subgroup [BKKO17]. By
[LB17], this class of groups properly contains the class of groups satisfying the equiv-
alent properties of Theorem 1.13. Theorem 1.13 has also been given another proof
in [BKKO17], and has been exploited there to provide new proofs of C∗-simplicity
of many previously known examples. Prior to [KK17, BKKO17], almost all known
proofs of C∗-simplicity were implicitly or explicitly based on the existence of an ac-
tion (most of the time isometric) satisfying a weak form of properness as well as a
weak form of non-positive curvature. Examples of such situations covered non-abelian
free groups [Pow75], non-trivial free products [PS79], hyperbolic groups [Har88],
relatively hyperbolic groups [AM07], lattices in semisimple connected Lie groups
[BCH94], centerless mapping class groups and outer automorphism groups of free
groups [BH04], acylindrically hyperbolic groups [DGO17].

The following statement is a direct consequence of the combination of Theorem
1.13 and Theorem 1.4. It provides a criterion to show C∗-simplicity among the class
of micro-supported groups (a class of groups that is disjoint from all the above classes
of groups).
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Corollary 1.14 ([LBMB18]). Let G be a discrete group admitting a micro-
supported action on a Hausdorff space X such that the rigid stabilizer of every non-
empty open subset of X is non-amenable. Then G is C∗-simple.

Corollary 1.15 ([LBMB18]). The following groups are C∗-simple:
(1) Thompson’s group V ; as well as the higher-dimensional nV , n ≥ 2.
(2) Any non-amenable branch group.
(3) Any topological full group F(Λ, X) associated to a free minimal action of a

non-amenable group Λ on the Cantor space X.
(4) the groups H(A) and G(A) of piecewise projective homeomorphisms of R

and P1(R) associated to a dense subring A of R.
(5) Any group P(G) of piecewise prescribed automorphisms of a tree T associated

to a subgroup G of Aut(T ) such that the action of G on T is minimal and
of general type and with non-amenable edge stabilizers.

5. Non-discrete locally compact micro-supported groups

This section extends the discussion of Section 4 to the situation where the group
G is no longer discrete. This section is the only part of Chapter 1 that does not rely
on Theorem 1.4.

When G is a locally compact group, the equivalence between properties (i)-(ii)-
(iii)-(iv) from Theorem 1.13 remain true provided "amenable" is replaced by "relatively
amenable". We refer to [CM14] for the notion of relative amenability. The proof goes
as in the discussion below Theorem 1.13. However the equivalence between freeness
and topological freeness of the action on ∂FG no longer follows from [Fro68]. It
is nevertheless true, and follows from the main result of [LBT25] (joint work with
Todor Tsankov). See Corollary 1.3 in [LBT25].

While, as seen in Section 4, many familiar discrete groups have no amenable
confined subgroups, many classical examples of non-discrete locally compact groups
do have amenable confined subgroups. This is notably the case for semisimple Lie
groups and semisimple algebraic groups over local fields, or for any closed subgroup
G ≤ Aut(Td) of the automorphism group of a d-regular tree Td (d ≥ 3) acting 2-
transitively on ∂Td: any such groupG has a cocompact (and hence confined) amenable
subgroup. Additional examples include closed subgroups G ≤ Aut(∆) of the auto-
morphism group a locally finite building acting strongly transitively on ∆ [CL11,
Theorem 4.10].

The following result provides a sufficient condition ensuring that a locally com-
pact micro-supported group admits no relatively amenable confined subgroup. The
criterion applies under a stronger requirement than micro-supported. If G is a totally
disconnected locally compact (tdlc) group and X a totally disconnected compact G-
space, we say that the G-action on X is piecewise minimal-strongly-proximal if
for every non-empty clopen subset U of X, the action of the rigid stabilizer RistG(U)
on U is minimal and strongly proximal.

Theorem 1.16 ([CLBMB22]). Let G be a tdlc group admitting a faithful and
piecewise minimal-strongly-proximal action. Then G does not have any relatively
amenable confined subgroup.

Note that the definition of piecewise minimal-strongly-proximal implies in partic-
ular that for every non-empty clopen subset U of X, the rigid stabilizer RistG(U) is
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non-amenable. Hence discrete groups as in Theorem 1.16 are already known not to
have amenable confined subgroups in view of Theorem 1.4.

Following [CRW17b], let S denote the class of non-discrete tdlc groups that
are compactly generated and topologically simple. We refer to [Cap18, CW23] for
recent results highlighting the role of the class S in the study of tdlc groups. Results
from [CRW17b, § 1.4, § 6] split the class S into four disjoint subclasses, one of
which being the class of micro-supported groups in S. Here in order to simplify the
discussion, we restrict to the case of abstractly simple groups G in S. For those,
exactly one of the following three situations occurs:

• (Locally hereditarily just-infinite) Every compact open subgroup U of G is
just-infinite. Just-infinite means U is infinite and every proper quotient of
U is finite.
• (Micro-supported) There is a compact totally disconnected G-space on which
the action is micro-supported, minimal and strongly proximal.
• (Non-principal filter type) These are characterized by the property that G
has an infinite non-open compact locally normal subgroup, and no two in-
finite compact locally normal subgroups commute. Locally normal means
that the subgroup has open normalizer.

In the micro-supported situation, it is not always the case that the action is
piecewise minimal-strongly-proximal. For instance, consider the index two subgroup
G of the automorphism group Aut(Td) of a d-regular tree Td. The group G is non-
discrete, compactly generated, and abstractly simple by [Tit70]. The G-action on
∂Td is micro-supported, but the rigid stabilizer RistG(U) of a non-empty proper
clopen subset U of ∂Td is a compact subgroup of G, and acts on U with an invariant
probability measure.

There are nevertheless various examples of micro-supported groups in S to which
Theorem 1.16 applies. Examples are the Neretin groups:

Corollary 1.17 ([CLBMB22]). For every d, k ≥ 2, the Neretin group Nd,k

does not have any relatively amenable confined subgroup.

One property of the groupNd,k that is deduced from Corollary 1.17 in [CLBMB22]
is that Nd,k admits (explicit) weakly equivalent quasi-regular irreducible representa-
tions that are not equivalent. This property subsequently gave rise to further work
of Arimoto [Ari22]. More recently, in a related direction Morando showed that the
regular representation of Nd,k is factorial [Mor25].

6. Other works (directly or indirectly) related to Chapter 1

(1) On closure operations in the space of subgroups and applications (with D.
Francoeur).
Ergodic Theory Dynam. Systems, Volume 45, Issue 12, 2025, pp. 3728-
3748.

(2) On the growth of actions of free products (with N. Matte Bon and V. Salo).
Groups Geom. Dyn., Vol. 19, Issue 2 (2025), 661–680.

(3) Continuity of the stabilizer map and irreducible extensions (with T. Tsankov).
Comment. Math. Helv., Vol. 100, Issue 1 (2025), 123–146.

(4) Confined subgroups and high transitivity (with N. Matte Bon).
Ann. H. Lebesgue, Volume 5 (2022), pp. 491-522.
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(5) Amenable uniformly recurrent subgroups and lattice embeddings.
Ergodic Theory Dynam. Systems, Volume 41, Issue 5, 2021, pp. 1464-
1501.

(6) Locally compact groups whose ergodic or minimal actions are all free (with
N. Matte Bon).
Int. Math. Res. Not., Vol. 2020, Issue 11, June 2020, 3318–3340.





CHAPTER 2

On the geometry of Schreier graphs of solvable groups

In this chapter we present results from [LBMB22b], joint work with Nicolás
Matte Bon.

1. Growth of Schreier graphs

Let G be a finitely generated group, and S a finite symmetric generating subset.
If X is a G-set, we denote by Γ(G,X) the graph whose vertex set is X, and for every
x ∈ X and s ∈ S there is an edge connecting x to sx. The graph Γ(G,X) is called the
Schreier graph of the action of G on X. The group G being fixed, we are interested
in common geometric properties of all Schreier graphs of faithful actions of G. In
the sequel we focus on their growth. The growth of the action of G on X is the
function that measures the maximal cardinality of a ball of radius n in Γ(G,X):

volG,X(n) = max
x∈X
|Sn · x|.

Given functions f, g : N→ N, we write f(n) 4 g(n) if there is a constant C > 0 such
that f(n) ≤ Cg(Cn), and f(n) ' g(n) if f(n) 4 g(n) and g(n) 4 f(n). The function
volG,X(n) does not depend on the choice of S up to '.

For the left translation action of G on itself, volG,X(n) is the classical growth of
the group G, denoted volG(n). It is clear that for every G-set X we have volG,X(n) 4
volG(n). Various groups admit faithful actions for which the function volG,X(n) is
strictly smaller than volG(n). Classical instances of groups naturally coming with a
faithful action such that volG,X(n) ' n are B.H. Neumann’s examples of continuously
many non-isomorphic finitely generated groups [Neu37], the Houghton groups, the
Grigorchuk group [BG00], the lamplighter group A o Z for every finite group A, the
topological full group of a Z-action on the Cantor space, and Nekrashevych’s groups
obtained as fragmentation of dihedral groups [Nek18]. Actions of linear growth, and
more generally the analysis of graphs of actions, played a crucial role in the recent
developments on topological full groups and other related groups [JM13, JNS16,
Nek18, BNZ22]. Other examples of groups admitting faithful actions of linear
growth are virtually abelian groups, non-abelian free groups [Sch27], and right-angled
Artin groups [Sal21].

We are interested in understanding obstructions to the existence of faithful actions
of small growth. We introduce the following definition:

Definition 2.1. Let f : N → R+. A finitely generated group G has a Schreier
growth gap f(n) if every faithful G-set X satisfies volG,X(n) < f(n).

We always have volG,X(n) < n for every faithful G-set X provided the group G is
infinite. We are interested in Schreier growth gaps where the function f is super-linear
(f(n)/n is unbounded).

21
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If a group G has a Schreier growth gap f(n), then the same is true for any
group having G as a subgroup. Hence in the study of Schreier growth gaps it is
natural consider groups that are generally thought of being rather small. In the work
[LBMB22b] we carry out a study of Schreier growth gaps for finitely generated
solvable groups.

2. Metabelian groups

As mentioned above, every virtually abelian group admits a faithful action with
linear growth. Hence in the sequel virtually abelian groups are permanently excluded
from the discussion.

The situation for metabelian groups is already diverse. The starting observation
is that there are metabelian groups of exponential growth which admit faithful actions
of polynomial growth. Examples are the wreath product G = A o B of two finitely
generated abelian groups. The group G is the semi-direct product ⊕BAo B, where
⊕BA is the set of finitely supported functions B → A, and B acts on ⊕BA by
b · ϕ : b′ 7→ ϕ(b−1b′). The action of G on the set B × A defined by (ϕ, b) · (b0, a0) =
(bb0, ϕ(bb0)a0) is called the standard wreath product action. With natural choices of
generators, the graph of this action is obtained by taking a copy of the Cayley graph
of A and attaching to each vertex a copy of the Cayley graph of B, and its growth
is equivalent to the growth of the abelian group B ×A. So for the lamplighter group
G = Cp o Z (where Cp is the cyclic group of order p), the standard wreath product
action satisfies volG,X(n) ' n. Hence in particular there is no Schreier growth gap
that is uniform for all (non-virtually abelian) metabelian groups. Nevertheless we
establish a uniform quadratic gap in the following two situations:

Theorem 2.2 ([LBMB22b]). Let G be a finitely generated metabelian group that
is not virtually abelian. Suppose that G satisfies at least one of the following:

i) G is finitely presented;
ii) G is torsion-free.

Then G has a Schreier growth gap n2.

The following result establishes a more quantitative estimate. Whenever G is a
finitely generated metabelian group and 1 → M → G → Q → 1 is a short exact
sequence with M,Q abelian, M can be seen as a finitely generated module over the
group ring ZQ. This point of view plays a crucial role in the study of metabelian
groups since the seminal work of Hall [Hal54]. The Krull dimension of the ZQ-module
M does not depend on the choice of (M,Q) provided G is not virtually abelian. This
positive integer is called the Krull dimension of G [LS03, §9.4], [Cor11], [Jac19].

Theorem 2.3 ([LBMB22b]). Let G be a finitely generated metabelian group
which is not virtually abelian, and let k = dimKrull(G). Then G has a Schreier
growth gap nk.

We have dimKrull(Cp oZd) = d and dimKrull(Z oZd) = d+1, so the group Cp oZd has
a Schreier growth gap nd, and the group ZoZd has a Schreier growth gap nd+1. In both
cases the estimate is sharp, as the bound is attained by the standard wreath product
action. As another example, for the free metabelian group on d ≥ 2 generators, we
obtain a Schreier growth gap nd+1 (and this estimate is also sharp). The case of the
free metabelian group is quite specific among free solvable groups, as we also show
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that the free solvable group of rank d ≥ 2 and solvability length ` ≥ 3 has a Schreier
growth gap exp(n) [LBMB22b, Theorem 7.22].

3. Solvable groups

We now consider solvable groups of higher solvability length, and first focus on
the class of solvable groups of finite rank. Recall that a solvable group G is of finite
rank (or finite Prüfer rank) if there is an integer k such that every finitely generated
subgroup of G can be generated by at most k elements. A wreath product A o B
is never of finite rank provided A is non-trivial and B is infinite. Every polycyclic
group is of finite rank. The solvable Baumslag–Solitar group Z[1/n] on Z, n ≥ 2, is
an example of a non-polycyclic group that is of finite rank. More generally, every
finitely generated solvable group that is linear over Q is of finite rank (and those
groups are precisely the finitely generated solvable groups of finite rank that are
virtually torsion-free).

Theorem 2.4 ([LBMB22b]). Let G be a finitely generated solvable group of
finite rank, and assume that G is not virtually nilpotent. Then G has a Schreier
growth gap exp(n).

Moving to arbitrary solvable groups, we conjecture that the quadratic Schreier
growth gap for torsion-free metabelian groups from Theorem 2.2 extends to torsion-
free solvable groups:

Conjecture 2.5 ([LBMB22b]). Let G be a finitely generated solvable group
which is virtually torsion-free. If G is not virtually abelian, then G has a Schreier
growth gap n2.

The conjecture is true in the following situations:

Theorem 2.6 ([LBMB22b]). Let G be a finitely generated solvable group which
is virtually torsion-free. Suppose that G satisfies at least one of the following:

i) G admits a nilpotent normal subgroup N such that G/N is virtually abelian
(e.g. G is linear);

ii) the successive quotients in the Fitting series of G are torsion-free.
Then Conjecture 2.5 is true for G.

Theorem 2.2 immediately implies that if a torsion-free group G contains a finitely
generated metabelian subgroup which is not virtually abelian, then G has a Schreier
growth gap n2. It follows from classical arguments that this situation covers case
i) of Theorem 2.6. The case ii) of Theorem 2.6 does not only rely on the case of
metabelian groups. It involves a more technical mechanism that allows in some cases
to lift the desired conclusion from a quotient to the ambient group.

While Theorem 2.6 establishes Conjecture 2.5 under additional assumptions on
G, it is also natural to add assumptions on the actions. The following result asserts
that the conjecture is true if we restrict to transitive actions, and more generally to
actions with finitely many orbits.

Theorem 2.7 ([LBMB22b]). Let G be a finitely generated solvable group which
is virtually torsion-free, and not virtually abelian. Let X be a faithful G-set such that
the action of G on X has finitely many orbits. Then volG,X(n) < n2.
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4. The method: non-foldable subsets and confined subgroups

Our approach to study Schreier growth gaps is based on the following notion of
independent interest introduced in [LBMB22b].

Definition 2.8. Let G be a group and L a subset of G.
• Let X be a G-set. We say L is non-folded in X if for every finite subset Σ
of L, there is x ∈ X such that the orbital map g 7→ gx is injective on Σ.
• We say L is non-foldable if L is non-folded in X for every faithful G-set
X.

Showing that a subset L of G is non-foldable consists in showing that certain
subsets of Sub(G) made of confined subgroups of G are not faithful. The connection
is as follows. If H is a confined subgroup of G and P is a finite subset of non-trivial
elements of G such that gHg−1 ∩ P 6= ∅ for every g ∈ G, then we say that P is
a confining subset for H. We denote by SG(P,G) the set of confined subgroups
H of G for which P is a confining subset. The subset SG(P,G) is closed and G-
invariant in Sub(G). We say that a G-invariant subset R ⊂ Sub(G) is not faithful if
there is a non-trivial normal subgroup N of G such that N ≤ H for every H ∈ R.
Then Lemma 1.12 in [LBMB22b] asserts that a subset L of G is non-foldable if
and only if for every finite subset Σ ⊂ L, the set SG(P,G) is not faithful, where
P = {g−1h : g, h ∈ Σ, g 6= h}.

The data of a subset L of G that is non-folded in X provides information on the
geometry of the graph Γ(G,X), as by definition the graph Γ(G,X) contains copies of
arbitrarily large finite subsets of L. In terms of growth, this implies that volG,X(n)
must be at least equal to the relative growth f(G,L)(n) of L in G (the maximal
cardinality of a ball of radius n in L, where L is equipped with the induced metric
from G). In particular if L is a non-foldable subset of G, then G has a Schreier growth
gap f(G,L)(n). Our method to establish the results stated in Sections 2 and 3 consists
in exhibiting non-foldable subsets (via a study of certain subsets SG(P,G) of confined
subgroups as indicated above) that are sufficiently large, and explicit enough so that
we can compute (or at least bound from below) their relative growth in G. We refer
to [LBMB22b, Theorem 4.9] (which treats the case of solvable groups of finite rank
of Theorem 2.4), to [LBMB22b, Theorem 6.10] (about metabelian groups; see also
Theorems 6.24 and 6.27 respectively for torsion-free metabelian groups and finitely
presented metabelian groups) for statements exhibiting non-foldable subsets.



CHAPTER 3

Lattices in products of simple locally compact groups

In this chapter we present some results from [CLB19], which is joint work with
Pierre-Emmanuel Caprace.

1. The setting

The study of lattices Γ in semisimple Lie groups or algebraic groups over a local
field gave rise to a tremendous amount of works. Some accounts of the developments
of the theory that occurred between ∼ 1970−1990 are recorded in the books [Mar91,
Zim84]. The study of lattices Γ ≤ G in a locally compact group G that splits as a
direct product G = G1 × · · · × Gn, n ≥ 2, takes its origins from this world. In that
setting the natural assumption that prevents Γ from being itself a direct product of
lattices in each factor is to require that Γ has a dense projection on each factor.

Beyond the classical picture of semisimple or algebraic groups, the study of lattices
in a locally compact group G that decomposes as a product G = G1 × G2, where
each Gi is a closed cocompact subgroup of the automorphism group of a locally
finite regular tree, has been pioneered by Burger–Mozes. Among the achievements
in [BM97, BM00a, BM00b], Burger–Mozes established an analogue of Margulis’
normal subgroup theorem in this setting, which applies to cocompact lattices Γ ≤
G = G1 ×G2 with dense projections and such that the factor groups G1 and G2 are
certain topologically simple cocompact subgroups of the automorphism group of a
regular tree (using notation introduced in Section 5 of Chapter 1, these factor groups
are examples of groups in the class S). This led to the discovery that cocompact
lattices in product of automorphism groups of trees can enjoy drastically different
properties than lattices in semisimple or algebraic groups. In particular Burger–Mozes
exhibited cocompact lattices acting on a product of trees that are simple groups. Non-
residually finite examples were also constructed by Wise [Wis96]. Those groups split
as amalgamated product Γ = F1 ∗F3 F2, where each Fi is a finitely generated non-
abelian free group, and F3 is embedded as a finite index subgroup in F1 and F2. A
version of Margulis’ normal subgroup theorem was then later established by Bader–
Shalom in a high degree of generality [BS06]. We refer to the recent survey [Cap19]
for an extensive discussion on this topic.

Rémy showed that Kac–Moody groups also provide a source of lattices in products
of locally compact groups [Ré99]. In that setting Caprace–Rémy constructed finitely
generated non-cocompact lattices in products G = G1 ×G2 of automorphism groups
of buildings that are simple. Those are of different nature than lattices acting on
product of trees, for instance because they have Kazhdan’s property (T) [CR09].

In the work [CLB19] we consider cocompact lattices in products of compactly
generated topologically simple locally compact groups, and establish results in this
setting that are influenced by classical results in the setting of semisimple Lie groups.
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Our results are actually valid in products of locally compact groups in which the
factors satisfy a weaker condition than topological simplicity. We recall that a locally
compact group G is called just-non-compact (JNC) if G is non-compact and every
closed normal subgroup is trivial or cocompact. We say that G is quasi just-non-
compact (QJNC) if G is non-compact and every closed normal subgroup is discrete
or cocompact. See Section 3 below for the relevance of this property in the context of
automorphism groups of connected locally finite graphs. Clearly JNC implies QJNC.

We note that a QJNC group is either totally disconnected, or almost connected
(meaning that the identity component is cocompact). In the sequel we only consider
the situation where the ambient group G is totally disconnected. Actually in the
presence of a QJNC almost connected factor, the arithmeticity results of Caprace–
Monod [CM09, Theorem 5.18] and Bader–Furman–Sauer [BFS19, Theorem 1.5]
imply much stronger constraints on the lattices and on the other factors of G.

We use the shorthand tdlc for "totally disconnected locally compact".

2. Uniform discreteness

Let G be a semisimple Lie group without compact factor. A classical result of
H. C. Wang asserts that for every lattice Γ ≤ G, the collection of discrete subgroups
of G containing Γ is finite [Wan67]. Bass–Kulkarni showed that in G = Aut(Td), the
automorphism group of the d-regular tree Td, there exists infinite towers of cocompact
lattices Γ ( Γ1 · · · ( Γn · · · [BK90, Theorem 7.1]. Since the group Aut(Td) is
compactly generated and has a simple open subgroup of index 2 [Tit70], Wang’s
theorem cannot be expected to hold for cocompact lattices in compactly generated
topologically simple tdlc groups. The following is the analogue of Wang theorem for
cocompact lattices with dense projections in products.

Theorem 3.1 ([CLB19]). Let n ≥ 2, and let G1, . . . , Gn be non-discrete, com-
pactly generated, QJNC tdlc groups. Let Γ ≤ G = G1×· · ·×Gn be a cocompact lattice
such that the projection of Γ to Gi is dense in Gi for all i. Then the set of discrete
subgroups of G containing Γ is finite.

Given a compact subset K ⊆ G of a locally compact group G, a subgroup H is
called K-cocompact if G = HK.

Theorem 3.2 ([CLB19]). Let n ≥ 2, let G1, . . . , Gn be non-discrete compactly
generated QJNC tdlc groups, and let G = G1×· · ·×Gn. Let K be any compact subset
of G, and let LK(G) be the set of discrete K-cocompact subgroups Γ ≤ G with dense
projection in Gi for all i. Then there exists an identity neighbourhood VK such that
VK ∩ Γ = {1} for every Γ ∈ LK(G).

The conclusion of Theorem 3.2 can equivalently be stated saying that LK(G) ⊂
Sub(G) is a closed subset of the Chabauty space Sub(G). The proof consists in
studying accumulation points of LK(G) in Sub(G), and can be divided into two
independent steps. The first consists in showing that, arguing by contradiction, if
LK(G) accumulates to a non-discrete subgroup of G, then there is (a finite index
subgroup of) one factor Gi that is itself an accumulation point of discrete subgroups
in Sub(Gi) [CLB19, Proposition 4.6, Corollary 5.6]. The second step consists in
proving the following result, which is of independent interest:
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Theorem 3.3 ([CLB19]). Let G be a non-discrete, compactly generated, QJNC
tdlc group. Suppose that there is a sequence of discrete subgroups of G that converges
in Sub(G) to a finite index subgroup of G. Then there is a prime p and a compact
open subgroup V ≤ G such that V is a pro-p group, and V is not topologically finitely
generated.

These two steps indeed give rise to the desired contradiction, because, as already
observed in [BM00a, BM00b], if a productG = G1×· · ·×Gn of compactly generated
tdlc groups contains a cocompact lattice with a dense projection on each factor, then
every compact open subgroup of each Gi must be topologically finitely generated.

The proof of Theorem 3.3 makes use of results of Caprace–Reid–Willis [CRW17b],
and elaborations of these by Caprace–Reid–Wesolek [CRW21], on the local prime
contents of compact locally normal subgroups of tdlc groups. Here those results play
a role in the abstract setting of Theorem 3.3 that is similar to the role played by
Burger-Mozes’s generalization of the Thompson-Wielandt theorem in the setting of
groups of automorphisms of trees with primitive local action [BM00a, Proposition
2.1.2].

Kazhdan–Margulis proved that if G is a semisimple Lie group without compact
factor, then there exists an identity neighbourhood V in G such every lattice Γ of G
admits a conjugate that intersects V trivially [KM68]. This implies in particular the
set of covolumes of all lattices in G is bounded away from zero. Here it follows from
the conclusion of Theorem 3.2 and Serre’s covolume formula (see [Bou00, Proposi-
tion 1.4.2(b)]) that the set of covolumes covol(Γ), for Γ ∈ LK(G), is finite. We do not
know whether there could exist a neighbourhood of the identity as in the conclusion
of Theorem 3.2 that is actually independent of K.

Under the stronger assumption that each factor is compactly presented (and not
only compactly generated), relying on local rigidity results of Gelander-Levit, we
obtain a stronger finiteness result than Theorem 3.2, see Theorem C in [CLB19].

3. Discrete groups acting on products of graphs

The previous theorems have applications to discrete groups acting on products of
graphs. Let X be a connected locally finite graph, and G ≤ Aut(X) be a subgroup
of Aut(X). If v ∈ V X is a vertex of X, we denote by X(v) the vertices at distance 1
from v, and by Gv the stabilizer of v in G. The permutation group induced by the
action of Gv on X(v) is called the local action of G at v.

A permutation group L of a set Ω is primitive if the only L-invariant partitions
of Ω are the trivial ones; quasi-primitive if L is transitive and the only intran-
sitive normal subgroup is trivial; and semi-primitive if L is transitive and every
intransitive normal subgroup of L acts freely. Clearly semi-primitive is a weakening
of quasi-primitive, and quasi-primitive is a weakening of primitive.

We say that a subgroup G ≤ Aut(X) has local action with a given property if
the local action of G at every vertex has the corresponding property. Note that a
subgroup G ≤ Aut(X) with transitive local action always acts cocompactly on X.
As first observed by Burger-Mozes, QJNC groups appear naturally in the context of
automorphism groups with semi-primitive local action. The following is a simplified
version of [BM00a, Proposition 1.2.1] (restated in [CLB19, Proposition 6.7] for
semi-primitive rather than quasi-primitive local action).
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Proposition 3.4. Let X be a connected locally finite graph. Let G ≤ Aut(X) be
a closed subgroup with semi-primitive local action. Then G is QJNC.

Let G ≤ Aut(X) a closed subgroup acting cocompactly on X. If K is a compact
subset of G, there is r ≥ 1 such that any K-cocompact subgroup of G acts on X
with at most r orbits. Conversely, for every r ≥ 1 there is a compact subset K ⊂ G
such that any subgroup of G acting with at most r orbits on X is K-cocompact.
Hence in view of Proposition 3.4, the two assertions of the following statement are
consequences respectively of Theorem 3.1 and Theorem 3.2.

Corollary 3.5 ([CLB19]). Let n ≥ 2. Let X1, . . . , Xn be connected locally
finite graphs, and for each i let Gi ≤ Aut(Xi) be a non-discrete closed subgroup with
semi-primitive local action. Let G = G1 × · · · ×Gn and X = X1 × · · · ×Xn.

(1) For every cocompact lattice Γ ≤ G such that pi(Γ) is dense in Gi for all i,
the set of discrete subgroups of G containing Γ is finite.

(2) For every r ≥ 1, there exists R such that for every cocompact lattice Γ ≤ G
with at most r orbits on V X and such that pi(Γ) is dense in Gi for all i, we
have that the pointwise stabilizer in Γ of any R-ball of X is trivial.

In the setting of discrete groups acting cocompactly on the product of two trees,
a version of the Wang finiteness theorem had been previously established by Burger–
Mozes in [BM14, Theorem 1.1]. Statement 1 extends the main result of [BM14]
from the case where each Gi has quasi-primitive local action of almost simple type,
to the case where each Gi has semi-primitive local action. Burger–Mozes further
asked whether, in case each Gi has quasi-primitive local action, the set of covolumes
of all cocompact lattices of G1×G2 with dense projections is bounded away from zero
[BM14, Question 1.2]. Statement 2 provides a partial answer to this question since,
r ≥ 1 being fixed, that statement implies that the set of covolumes of all cocompact
lattices of G1 ×G2 with dense projections and at most r orbits on V X, is finite.



CHAPTER 4

Commensurated subgroups and micro-supported actions

In this chapter we present some results from [CLB23], which is joint work with
Pierre-Emmanuel Caprace. The reader is invited to consult Appendix A and Appen-
dix B before reading the present chapter.

1. Generalities on commensurated subgroups

Two subgroups Λ,Λ′ of a group Γ are commensurable if their intersection Λ∩Λ′
has finite index in Λ and Λ′. A subgroup Λ ≤ Γ is commensurated in Γ if all Γ-
conjugates of Λ are commensurable. One verifies that this is equivalent to saying that
the Λ-action on the coset space Γ/Λ has finite orbits. The most classical example of a
commensurated subgroup is Λ = SL(n,Z) inside Γ = SL(n,Q). Every subgroup that
is commensurable to a commensurated subgroup is itself commensurated.

Given a group Γ, we are interested in the problem of understanding all (commen-
surability classes of) commensurated subgroups of Γ. That problem is closely related
to the study of homomorphisms Γ→ G from Γ to a tdlc group that have dense image
(as before tdlc stands for “totally disconnected locally compact”). Indeed, if Γ → G
is such a homomorphism, then the preimage in Γ of every compact open subgroup
of G is a commensurated subgroup of Γ. Conversely if Λ ≤ Γ is a commensurated
subgroup, then one can build a tdlc group G and a homomorphism Γ→ G with dense
image such that the preimage in Γ of a compact open subgroup of G is commensu-
rable with Λ. One possible way to do this is to consider the left translation action of
Γ on the coset space Γ/Λ, and the associated homomorphism Γ→ Sym(Γ/Λ). Since
Λ acts on Γ/Λ with finite orbits, the closure (with respect to pointwise convergence)
of the image of Λ in Sym(Γ/Λ) is a compact group, and the closure of the image of
Γ in Sym(Γ/Λ) is tdlc. This tdlc group is denoted Γ//Λ, and is referred to as the
Schlichting completion of Γ with respect to Λ [Sch80]. We refer to [SW13, Section
3] for a more detailed introduction, and to [RW19] for additional properties.

Examples of commensurated subgroups are normal subgroups, and more generally
subgroups commensurable to a normal subgroup. This includes the finite subgroups,
and the finite index subgroups. Subgroups commensurable to a normal subgroup are
considered as “trivial examples” of commensurated subgroups. They are character-
ized by the fact that the completion Γ//Λ admits a compact open normal subgroup
[CLB23, Lemma 5.1]. We are generally interested in those commensurated subgroups
not of this form.

One important situation where the description of commensurated subgroups re-
mains unknown is when Γ is an irreducible lattice in higher rank semisimple Lie
group, or an S-arithmetic subgroup in a product of simple algebraic groups over local
fields. While Margulis’ normal subgroup theorem says that every normal subgroup of
Γ is finite or finite index, the Margulis-Zimmer conjecture on the description of the
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commensurated subgroups of Γ remains open. Partial positive results were obtained
by Venkataramana [Ven87] and Shalom-Willis [SW13].

Somehow reversing the point of view, if Λ is a discrete subgroup of some ambi-
ent locally compact group G, it is of general interest to relate properties of Λ with
those of the commensurator CommG(Λ) of Λ in G. One key result in this realm is
Margulis’ arithmeticity theorem, which asserts that if Λ is an irreducible lattice in
G a semisimple Lie group with trivial center and no compact factor, then Λ is arith-
metic if and only if CommG(Λ) is a dense subgroup of G [Mar91]. Similar problems
relating properties of Λ with those of its commensurator have been investigated in
[LLR11, Mj11, FMvL24].

2. Commensurated subgroups and the dynamics of micro-supported
actions

In [CLB23] we consider the problem of the description of the commensurated
subgroups in the setting where Γ is a group admitting a faithful, minimal and micro-
supported action on a compact space. The main result of [CLB23], of which the
following statement is a simplified version, relates the existence of certain commen-
surated subgroups in Γ with the dynamics of the micro-supported actions of Γ.

Theorem 4.1 ([CLB23]). Let Γ be a finitely generated group such that every
proper quotient of Γ is virtually nilpotent. Let X be a compact Γ-space such that the
action of Γ on X is faithful, minimal and micro-supported. If Γ has a commensurated
subgroup which is of infinite index and which is not virtually contained in a normal
subgroup of infinite index of Γ, then the following hold:

(i) X has a non-empty open subset which is compressible by Γ.
(ii) X is an almost Γ-boundary.

A subgroup Λ ≤ Γ is virtually contained in Λ′ ≤ Γ if Λ has a finite index
subgroup that is contained in Λ′. Let X be a compact Γ-space. Compressibility
and Γ-boundaries are defined in Appendix A. The action of Γ on X is an almost
Γ-boundary if X is minimal and X admits a Γ-invariant clopen partition X =
X1 ∪ · · · ∪ Xd such that for each i the action of StabΓ(Xi) on Xi is a StabΓ(Xi)-
boundary.

The conclusions of the theorem yield in turn restrictions on the structure of the
group Γ. By Lemma B.2, every group admitting a minimal and micro-supported
action with a compressible open subset is monolithic, meaning that Γ admits a non-
trivial normal subgroup, called the monolith, that is contained in every non-trivial
normal subgroup of Γ. For instance Γ cannot be residually finite. Since amenability
can be characterized by the property that the only boundary is the one-point space,
conclusion (ii) implies that Γ is not amenable.

3. On the proof

The proof of Theorem 4.1 can be divided into several independent steps. In the
sequel we sketch the rough outline. From now we take Γ and X as in Theorem 4.1.

Construction of a homomorphism from Γ to a JNC tdlc group. The
starting point of the proof is, given a commensurated subgroup Λ of Γ as in the
statement, to consider the completion Γ → Γ//Λ, and try to establish a connection
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between the tdlc group Γ//Λ and the Γ-space X. The next step of the proof, described
below, associates, given a homomorphism Γ→ G from Γ to a tdlc group with dense
image, a compact G-space that is built from the compact Γ-space X. It turns out
that for this G-space to be non-degenerate and manageable to work with, we will need
some assumptions on G. Hence the purpose of this first step of the proof is to replace
the homomorphism Γ→ Γ//Λ we start with by another homomorphism Γ→ G.

A tdlc group is called just-non-compact (JNC) if it is non compact and every
proper quotient is compact. The important feature of compactly generated, non-
discrete, JNC tdlc groups is that, by a result of Caprace–Monod, such a group is
monolithic, with cocompact monolith [CM11] (a result that is not true for discrete
groups). For the purpose of the continuation of the proof, the following lemma allows
to replace Γ//Λ by a compactly generated, non-discrete, JNC group.

Lemma 4.2 ([CLB23, Lemma 5.2]). Let Γ be a finitely generated JNVN group.
Let Λ ≤ Γ be a commensurated subgroup which is not virtually contained in a normal
subgroup of infinite index of Γ. Then the completion Γ//Λ admits a (necessarily com-
pactly generated) non-discrete JNC quotient G, and the composition homomorphism
ϕ : Γ→ G is injective with dense image.

Construction of a suitable compact G-space. In the sequel we fix ϕ : Γ→ G
an injective homomorphism with dense image from Γ to a second countable tdlc
group G. Ideally, one would like to extend the Γ-action on X to a G-action. This is
not possible to do so in general. As a substitute, we build a compact G-space such
that, viewed as a Γ-space by restricting the action to Γ, will be shown (under certain
assumptions) to have properties in common with the Γ-space X.

For, we go through the Chabauty space Sub(G) of G. We define the map ψ :
X → Sub(G), x 7→ ϕ(Γ0

x), where Γ0
x is the neighbourhood stabilizer of x in Γ (§1.1 in

Appendix A). One verifies that ψ is lower semi-continuous and Γ-equivariant [CLB23,
Lemma 4.1]. Invoking Proposition A.1, we infer that

Sϕ,G(X) :=
{
ϕ(Γ0

x) : x ∈ Xϕ

}
is a minimal compact Γ-space, where Xϕ ⊆ X is the set of points where the map
x 7→ ϕ(Γ0

x) is continuous. Since Γ is embedded densely in G, Sϕ,G(X) is G-invariant.
The issue is that in general Sϕ,G(X) may very well be degenerate, for instance it
could a one-point space. This is at this stage that additional assumptions on G come
into play, via the following statement, which is a key step of the proof.

Proposition 4.3 ([CLB23, Proposition 4.8]). Assume that G is non-discrete
and JNC. Then the action of G on Sϕ,G(X) is faithful and micro-supported.

Dynamics of micro-supported actions of JNC tdlc groups. A subgroup
of a tdlc group G whose normalizer is open is called locally normal. Two closed
subgroups K,L of G are called locally equivalent if K∩L is relatively open in both K
and L. Following [CRW17a], the structure lattice LN (G) is defined as the set of local
classes of closed locally normal subgroups of G. The group G acts by conjugation
on LN (G). The centralizer lattice of G, denoted LC(G), is the subset of LN (G)
consisting of the local classes of centralizers of locally normal subgroups of G. It
is shown in [CRW17a] that, under certain assumptions on G (which are satisfied
for instance if G is compactly generated, non-discrete and JNC), then the map ⊥ :
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LC(G)→ LC(G), [K]⊥ = [CG(K)], is well-defined and the operations
[K] ∧ [L] = [K ∩ L]

and
[K] ∨ [L] =

(
[K]⊥ ∧ [L]⊥

)⊥
turn LC(G) into a Boolean algebra. The Stone space of the Boolean algebra LC(G)
is denoted by ΩG. It is a compact totally disconnected G-space. The dynamics of the
action of G on ΩG has been studied in [CRW17b] under the assumption that the
G-action on ΩG is faithful. The following strongly relies on [CRW17b] and [CM11].

Theorem 4.4 ([CLB23, Theorem 3.17]). Let G be a compactly generated mono-
lithic tdlc group, and assume that the monolith of G is compactly generated, non-
compact and non-discrete (e.g. G is non-discrete JNC).

(i) If LC(G) is infinite, then the G-action on ΩG is faithful.
Moreover, any totally disconnected compact G-space X on which the G-action is

faithful and micro-supported is a factor of ΩG, and enjoys the following properties:
(ii) The G-action on X has a compressible clopen subset.
(iii) The G-action on X is an almost G-boundary.

Conclusion. Coming back to our sketch of proof of Theorem 4.1, faithfulness of
the G-action on Sϕ,G(X) given by Proposition 4.3 ensures LC(G) is infinite, and hence
the conclusion of Theorem 4.4 holds for the G-action on Sϕ,G(X). The subgroup Γ
being dense in G, we infer that the Γ-action on Sϕ,G(X) also is an almost boundary
with compressible open subsets. To relate this action to the original action of Γ on
X, we invoke a theorem of Rubin [Rub96], which ensures that the Γ-spaces X and
Sϕ,G(X) admit a common highly proximal extension. We finally conclude via the
fact that the property of being an almost boundary with compressible open subset is
inherited by (and from) a highly proximal extension [CLB23, §2.2].

4. Applications

In this subsection we describe concrete situations where Theorem 4.1 or other
results from [CLB23] apply.

Topological full groups. Let Λ be a group acting on a Cantor space X. The
associated topological full group is denoted F(Λ, X). We also denote by A(Λ, X) ≤
F(Λ, X) the alternating full group introduced and studied by Nekrashevych in [Nek19,
Nek18]. The action of Λ on X expansive if there exist a compatible metric d and
δ > 0 such that for every x 6= y ∈ X there exists γ ∈ Λ such that d(γ(x), γ(y)) ≥ δ. If
Λ is a finitely generated group and Λ y X is a minimal and expansive, Nekrashevych
showed that the group A(Λ, X) is the monolith of F(Λ, X), and is a finitely generated
and simple group. When Λ = Z the alternating full group coincides with the derived
subgroup of F(Λ, X), and in that case finite generation and simplicity of F(Λ, X)′
were previously obtained by Matui in [Mat06].

Suppose in addition that X admits a probability measure that is invariant under
the action of Λ. Such a probability measure is necessarily also invariant under the ac-
tion F(Λ, X). Since the existence of an invariant probability measure is incompatible
with the conclusion of Theorem 4.1, we obtain:
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Corollary 4.5 ([CLB23]). Let Λ be a finitely generated group, and Λ y X be
a minimal and expansive action on a Cantor space X. If X carries a Λ-invariant
probability measure (e.g. if Λ is amenable), then every proper commensurated subgroup
of the alternating full group A(Λ, X) is finite.

Corollary 4.5 implies that for every minimal and expansive action of Zd on a
Cantor space, every proper commensurated subgroup of A(Zd, X) is finite. When
d = 1, Juschenko and Monod showed that the group F(Z, X) is amenable [JM13].
One motivation for studying specifically the commensurated subgroups of finitely
generated infinite simple amenable groups comes from the fact that, if such a group
Γ were known to admit an infinite proper commensurated subgroup Λ, then by re-
sults of [CM11], the Schlichting completion Γ//Λ would admit as a quotient a com-
pactly generated tdlc group that is non-discrete, topologically simple and amenable
(see Proposition 3.6 in [CRW17b]). Equivalently, using notation from Section 5 of
Chapter 1, a group that belongs to the class S and is amenable. As of now, no such
example is available (see Question 3 in [CRW17b]). Hence Corollary 4.5 implies
that the above strategy to build such a group cannot work by starting with groups
such as A(Λ, X). Corollary 4.5 also answers a question raised at the end of [Cap18].

Groups acting on the circle. We refer the reader to [Ghy01] for an introduc-
tion to group actions on the circle.

Theorem 4.6 ([CLB23]). Let Γ be a finitely generated group with a minimal
and micro-supported action on the circle. Suppose that the subgroup generated by the
elements γ ∈ Γ such that there is a non-empty open interval that is fixed by γ has
finite index in Γ. Then every commensurated subgroup of Γ is commensurable to a
normal subgroup of Γ.

An example of group to which the result applies is Thompson’s group T , yielding
that every proper commensurated subgroup of Thompson’s group T is finite. In that
case this result had been previously established in joint work with Wesolek [LBW19].

Branch groups. We refer the reader to [Gri00, BGS03] for a general introduc-
tion to branch groups. The proof of the following statement relies on the main result
from [CLB23], as well as the fact that every normal subgroup of a finitely generated
branch group is finitely generated: that property is established by Francoeur in the
appendix of [CLB23].

Theorem 4.7 ([CLB23]). Let Γ be a finitely generated branch group. Then every
commensurated subgroup of Γ is commensurable to a normal subgroup.

Theorem 4.7 recovers and extends a result of Wesolek [Wes17], who showed the
same result under the additional assumption that Γ is just-infinite.

Micro-supported actions of locally compact groups. The results from
[CLB23] also have applications to the study of non-discrete locally compact groups.
Let G be a compactly generated tdlc group that is non-discrete and topologically
simple (retaining previous notation, G is a group in the class S). The centralizer
lattice LC(G) of G is well-defined [CRW17a]. The first question one wants to address
is whether the Stone space ΩG is trivial (i.e. a one-point space).
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Now suppose G,H are two groups as above, and there exists a continuous ho-
momorphism ϕ : H → G with dense image. Examples of such pairs (H,G) naturally
arise in the study of the local structure of groups in the class S, see [Rei13, The-
orem 1.2] and [CRW21]. In this situation, we study the relationship between the
centralizer lattice of H and that of G. We show:

Theorem 4.8 ([CLB23]). Let G,H be compactly generated tdlc groups that are
non-discrete and topologically simple, and ϕ : H → G be a continuous injective ho-
momorphism with dense image. Suppose ΩH is non-trivial. Then ΩG is non-trivial,
and the H-action on ΩG is micro-supported.

5. Other works (directly or indirectly) related to Chapter 4

(1) On commensurators of free groups and free pro-p groups (with Y. Barnea, M.
Ershov, C. Reid, M. Vannacci, T. Weigel). https://arxiv.org/abs/2507.04120.

(2) Commensurated subgroups in tree almost automorphism groups (with Ph.
Wesolek).
Groups Geom. Dyn.,Vol. 13, Issue 1 (2019), 1-30.



CHAPTER 5

Rigidity and flexibility results for groups with a common
envelope

In this chapter we present results from [LB25]. The reader is invited to consult
Appendix C before reading the present chapter.

1. Terminology

A locally compact group G is a cocompact envelope of a discrete group Γ if G
contains a discrete and cocompact subgroup isomorphic to Γ [Fur67]. We will say
that two discrete groups Γ and Λ share a cocompact envelope if there is a locally
compact group G such that G is a common cocompact envelope of Γ and Λ.

Definition 5.1. Let C be a class of finitely generated groups. We say that C is
rigid for cocompact envelopes if for every group Λ that shares a cocompact envelope
with a group Γ in C, the group Λ is virtually isomorphic up to finite kernel to a group
in C. We write “CE-rigid” for “rigid for cocompact envelopes”.

A class C is QI-rigid if for every group Λ that is QI to a group Γ in C, the group
Λ is virtually isomorphic up to finite kernel to a group in C. Two groups sharing a
cocompact envelope are always QI, so if the class C is QI-rigid, then C is CE-rigid.
Hence the question of CE-rigidity of a given class is relevant either when QI-rigidity
is not known, or when QI-rigidity is known to fail. The problem of CE-rigidity is a
sub-problem of the more general problem of studying all finitely generated groups, or
more generally compactly generated locally compact groups, that are commable to a
group Γ in C.

2. Nilpotent normal subgroup

In this section we consider CE-rigidity in the situation where the common cocom-
pact envelope G of two groups Γ and Λ is a totally disconnected locally compact (tdlc)
group. And we deal with the class of groups Γ having a finitely generated nilpotent
normal subgroup (implicitly assumed to be infinite, otherwise that requirement is
void).

Bader–Furman–Sauer showed that, under certain group theoretic requirements
on a group Γ, the envelopes G of Γ in which the connected component of the identity
G0 is not compact, enjoy very strong restrictions. See [BFS20, Theorem A]. This
result reduces, for those groups Γ, the general study of envelopes of Γ to the study
of tdlc envelopes. We also note that among those aforementioned group theoretic
requirements on Γ for [BFS20, Theorem A] to hold, there is the fact that Γ does
not admit any infinite amenable commensurated subgroup. Hence the setting of the
present section, where the ambient group G is tdlc and the subgroup Γ does admit
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an infinite normal amenable (indeed nilpotent) subgroup, is disjoint from (and hence
complementary to) the setting of [BFS20, Theorem A].

For finitely generated groups Γ and Λ, the existence of a common tdlc cocompact
envelope is equivalent to the existence of a connected locally finite graph on which Γ
and Λ act faithfully and geometrically. Indeed, if X is such a graph, then the group
of automorphisms of X is a common totally disconnected cocompact envelope. And
conversely if G is such an envelope, then Γ and Λ act geometrically on any Cayley-
Abels graph CayAb(G,U, S) of G, and Γ and Λ act faithfully on CayAb(G,U, S)
provided the compact open subgroup U of G is sufficiently small.

Theorem 5.2 ([LB25]). Let Γ be a finitely generated group with a normal sub-
group A C Γ such that A is finitely generated and nilpotent. Suppose that Γ and Λ
share a tdlc cocompact envelope. Then there is a finite index subgroup Λ′ of Λ such
that Λ′ admits a normal subgroup BCΛ′ such that A and B are virtually isomorphic.

Given the above reformulation in terms of geometric actions on graphs, Theorem
5.2 says that the property of containing a finitely generated nilpotent normal subgroup
(of a given virtual isomorphism class) can be detected on the graphs on which the
group acts geometrically (modulo passing to finite index).

It is worth comparing Theorem 5.2 with the situation where the common co-
compact envelope is not necessarily totally disconnected. The groups studied by
Leary-Minasyan in [LM21] include examples of groups Γ and Λ acting faithfully and
geometrically on Rd × T - the product of the d-dimensional Euclidean space Rd and
a locally finite tree T - such that Γ is of the form Γ = A × F with A = Zd and F
is a non-abelian free group of finite rank, and such that Λ does not virtually admit
any non-trivial abelian (or nilpotent) normal subgroup. Here the common cocompact
envelope is Isom(Rd) × Aut(T ). Hence these examples show that Theorem 5.2 does
not hold when the common envelope is not totally disconnected.

It is also interesting to connect the setting of Theorem 5.2 with other rigidity
results from the literature. Mosher–Sageev-Whyte’s Theorem 2 in [MSW03] shows
that if a group Γ acts cocompactly on an infinitely ended locally finite tree such that
vertex stabilizers (which are commensurated subgroups of Γ) are finitely generated
and nilpotent, and if Λ is a group QI to Γ, then Λ acts cocompactly on an infinitely
ended locally finite tree with vertex stabilizers QI to those of Γ. That result has
been generalized by Margolis [Mar21]. The setting of [Mar21, Theorem 1.4] covers
the situation of a group Γ having a finitely generated nilpotent subgroup A that is
commensurated in Γ, and provides sufficient conditions under which every group Λ
that is QI to Γ admits a finitely generated nilpotent subgroup B such that B is com-
mensurated in Λ and B is QI to A. So [MSW03, Theorem 2] and [Mar21, Theorem
1.4] both consider commensurated subgroups, while Theorem 5.2 deals with normal
subgroups (both in the assumption and in the conclusion). These two results hold in
the more general setting of QI groups Γ,Λ, as opposed to the stronger assumption
in Theorem 5.2 that Γ,Λ share a cocompact tdlc envelope. [Mar21, Theorem 1.4]
requires on the one hand Γ to be of type Fn for a certain n ≥ 2 (depending on A),
and on the other hand that the coset space Γ/A has infinitely many ends (the case
where Γ/A is a tree corresponding to [MSW03, Theorem 2]). Theorem 5.2 has no
such assumption.
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A main tool in the proof of Theorem 5.2, which also plays a major role in the proof
of Theorem 5.7 below, is provided by the following result of independent interest.

Theorem 5.3 ([LB25]). Let G be a tdlc group, and Γ a (not necessarily closed)
subgroup of G such that there is a compact subset K of G such that G = ΓK. If A is
a finitely generated nilpotent subgroup of G that is normalized by Γ, then there exists
a compact open subgroup U of G such that U is normalized by A.

The proof of Theorem 5.3 makes use of Willis’ theory [Wil94, Wil01, Wil04].
From that perspective, Theorem 5.3 can be thought of as a poorness property of the
dynamics of the global conjugation action of A on G, as it means that there is an
invariant compact neighbourhood of the identity. The original form of Willis’ work
deals with the study of the conjugation action of an individual element g on a tdlc
group G. The important notion there is the notion of tidy subgroups. We provide
a brief discussion in §2.1 in [LB25] about their relevant properties. When we move
in the study of the conjugation action on G from the case of an individual acting
element g to the case of a subgroup A acting on G, in general very few tools are
available. However when A is finitely generated nilpotent or polycyclic, results of
Shalom–Willis ensure the existence of tidy subgroups common for all elements of A
[SW13]. The proof of Theorem 5.3 notably relies on these results.

3. Solvable groups of finite rank

As observed by Erschler, the class of finitely generated solvable groups is not CE-
rigid. If F1, F2 are two finite groups of the same cardinality, the wreath products Γ =
F1 oZ and Λ = F2 oZ admit a common Cayley graph, and hence a common cocompact
envelope (the automorphism group of this Cayley graph). And Γ is solvable provided
F1 is, while Λ is not virtually solvable provided F2 is not solvable [Dyu00].

Here we focus on the class of solvable groups of finite rank (finite Prüfer rank).
We refer to Section 3 of Chapter 2 for a brief discussion on solvable groups of finite
rank, and to [LR04] for more general background. The large-scale geometry and QI-
rigidity of certain families of non-polycyclic solvable groups of finite rank have been
studied by Farb–Mosher in [FM98, FM99, FM00a]. In the case of the solvable
Baumslag–Solitar group Γ = Z[1/n] on Z, n ≥ 2, the main result of [FM99] asserts
that if Λ is a group QI to Γ, then Λ is virtually isomorphic up to finite kernel to Γ.

In [LB25] we establish both positive and negative results regarding CE-rigidity
for the class of solvable groups of finite rank. In the direction of rigidity, we have the
following:

Theorem 5.4 ([LB25]). Let Γ be a finitely generated solvable group of finite rank.
Let Λ such that Γ and Λ share a cocompact envelope. Suppose that Λ has no normal
subgroup that is infinite and locally finite. Then Λ is virtually solvable of finite rank.

On the flexibility side, we provide in [LB25] two constructions that show CE-
rigidity fails for the class of solvable groups of finite rank. So the assumption in
Theorem 5.4 that Λ has no normal subgroup that is infinite and locally finite is truly
needed. Our first construction yields examples of finitely generated groups Γ,Λ that
share a cocompact envelope, with Γ solvable of finite rank, and Λ not virtually solvable
[LB25, Theorem 5.10]. We exhibit examples with Γ of the form Γ = Z[1/n]2 oZ for
n ≥ 2 (so Γ is abelian-by-Z and of Hirsch number 3), and Λ of the form Z2 × F o Z,
where F is an arbitrary finite group of cardinality n.
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The above examples of groups Γ and Λ are not finitely presented. However we
provide in [LB25] a second construction that shows CE-rigidity fails for the class
of solvable groups of finite rank, that includes finitely presented groups, and even
groups with higher finiteness properties. Recall that a group Γ has type Fn, n ≥ 1,
if there exists a CW-complex with finite n-skeleton, with fundamental group Γ and
contractible universal cover [Wal65]. Fn+1 implies Fn, and F1 and F2 are respectively
equivalent to being finitely generated and being finitely presented. Having type Fn

is a QI-invariant [DK18, Theorem 9.56].

Theorem 5.5 ([LB25]). For every n ≥ 1, there are groups Γ,Λ of type Fn such
that Γ,Λ share a cocompact envelope, and:

• Γ,Λ are solvable;
• Γ is of finite rank and torsion-free;
• Λ is neither of finite rank nor virtually torsion-free.

As a consequence, we deduce:

Corollary 5.6 ([LB25]). The class of finitely generated solvable groups of finite
rank is not QI-rigid. More generally, for every n ≥ 1, the class of solvable groups of
finite rank of type Fn is not QI-rigid.

As a consequence of Gromov’s polynomial growth theorem, the class of finitely
generated nilpotent groups is QI-rigid. It is an open question whether the class of
polycyclic groups is QI-rigid [FM00b, Sha04, EFW07, EF10]. It is therefore
natural to ask about QI-rigidity for classes of solvable groups as close as possible to
the class of polycyclic groups. The above corollary establishes a border to what we can
hope for. Eskin–Fisher–Whyte conjectured that the class of polycyclic groups shall be
QI-rigid [EFW07, EF10, Conjecture 1.2]. Positive results in this direction had been
obtained by Shalom, who showed that any infinite group QI to a polycyclic group
has a positive first virtual Betti number [Sha04]. Eskin–Fisher–Whyte showed that
the subclass of the class of polycyclic groups consisting of cocompact lattices in the
Lie group Sol, is QI-rigid [EFW12, EFW13]. Generalizations to higher dimensional
examples have been obtained by Peng [Pen11a, Pen11b].

Farb–Mosher showed that the class of non-polycyclic finitely presented groups that
are abelian-by-Z (such groups are necessarily of finite rank) is QI-rigid [FM00a]. The
fact that the class finitely presented solvable groups of finite rank is not QI-rigid (i.e.
Corollary 5.6 for n = 2) implies that this QI-rigidity result no longer holds beyond
the abelian-by-Z case.

Shalom showed that if Γ is solvable of finite rank, and if Λ is a group QI to Γ
such that Λ is solvable and torsion-free, then Λ is of finite rank [Sha04, Theorem
1.6]. Theorem 5.5 shows that this theorem no longer holds without the assumption
that Λ is torsion-free.

The phenomena exhibited in Theorem 5.5 also show that the class of finitely
presented torsion-free solvable groups, and more generally the class of torsion-free
solvable groups of type Fn, is not QI-rigid [LB25, Corollary 6].

Our flexibility results that lead to Theorem 5.5 consist in embedding some solvable
groups of finite rank Γ as cocompact lattices in some (necessarily amenable) locally
compact group G, where G has the structure of a product G = Gc ×Gtd. The factor
Gc is a virtually connected solvable Lie group, and the factor Gtd is a tdlc group.
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The group Γ is embedded as an irreducible lattice in G. On the other hand, things
are arranged so that each one of the factors Gc and Gtd admits a cocompact lattice
such that the product of these produces a group Λ that fails to be virtually solvable
of finite rank.

Our constructions involve the Diestel–Leader graphs DLd(n), i.e. the subset of
the product of d copies of an (n+1)-regular tree T1×· · ·×Td defined by the equation
b1+· · ·+bd = 0, where bi is a Busemann function on Ti. We provide a first construction
where Gc = Isom(R2), the group of isometries of R2, and Gtd = Isom(DL2(n)). This
construction provides the examples mentioned in the paragraph right after Theorem
5.4. We provide another construction (that leads to Theorem 5.5) where Gc = Rd o
(R×)d−1, where (R×)d−1 is identified with the group of (d × d)-diagonal matrices of
determinant one; and where Gtd = Isom(DLd(n1))×· · ·×Isom(DLd(nk)) is a product
of isometry groups of Diestel–Leader graphs. And d ≥ 2 and k ≥ 1 are arbitrary.
As a concrete example, our smallest finitely presented groups Γ,Λ as in Theorem
5.5 are obtained with d = 3 and k = 1 and are of the form Γ = Z[1/p]3 o Z4 and
Λ = Z3oZ2×Fp[t, t−1, (t+ 1)−1]oZ2. See Examples 5.15 in [LB25] for a detailed
example. In Λ the right factor Fp[t, t−1, (t + 1)−1] o Z2 is Baumslag’s metabelian
group from [Bau72].

4. Polycyclic groups

We now turn our attention to polycyclic groups.

Theorem 5.7 ([LB25]). Consider the class of locally compact groups G such
that, after modding out by a compact normal subgroup, we have:

(1) G is unimodular and amenable;
(2) the identity component G0 is open in G, and G/G0 is virtually polycyclic.

Then this class is stable under commability.

One consequence of Theorem 5.7 is that if Γ is polycyclic and G is a cocompact
envelope of Γ, then after modding out by a compact normal subgroup, G is an ex-
tension of a connected Lie group and a discrete group. Hence another special case of
Theorem 5.7 (which is actually an intermediate step in the proof) is that every tdlc
cocompact envelope of Γ is compact-by-discrete. Recall that a group is compact-by-
discrete if it has a compact normal subgroup whose associated quotient is discrete.
Envelopes that are compact-by-discrete are somehow the trivial envelopes.

A discrete group belongs to the class described in the theorem if and only if it is
virtually polycyclic. Hence:

Corollary 5.8 ([LB25]). Let Γ be a polycyclic group, and let Λ be a discrete
group that is commable to Γ. Then Λ is virtually polycyclic.

For certain polycyclic groups Γ, we show that the only cocompact envelopes are
the ones that live within a certain natural envelope. Let d ≥ 2, and let A ≤ SL(d,Z)
be a subgroup such that A ' Zk and every non-trivial element of A has d distinct
positive eigenvalues. So A is diagonalizable over R, and there are commuting real
matrices X1, . . . , Xk such that, if ϕ : Rk → GL(d,R) is the homomorphism defined by
ϕ(t1, . . . , tk) = exp(t1X1 + · · ·+tkXk), then ϕ(Zk) = A. The associated connected Lie
group Gϕ = RdoRk is then a cocompact envelope of the group Γ = ZdoA ' ZdoZk.
We show the following:
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Theorem 5.9 ([LB25]). Suppose that every non-trivial element of A has d dis-
tinct eigenvalues, which are positive and different from 1. Then every cocompact
envelope G of Γ = Zd o A is, up to passing to a finite index subgroup and modding
out by a compact normal subgroup, isomorphic to a closed cocompact subgroup of
Gϕ = Rd oRk.

This theorem generalizes a result of Dymarz, who showed Theorem 5.9 for k = 1.
Specifically, when d = 2 and k = 1, the group Gϕ = R2 oR is the Lie group Sol, and
in that case Theorem 5.9 is [Dym15, Theorem 1.1.1]. More generally, the case d ≥ 2
and k = 1 in Theorem 5.9 is covered by [Dym15, Theorem 1.2].



CHAPTER 6

Commability of Baumslag-Solitar groups and
generalizations

In this chapter we present results from [CLB], which is joint work with Yves
Cornulier. The reader is invited to consult Appendix C before reading the present
chapter.

1. The setting

For a fixed n ≥ 1, consider the class Dn of finitely generated groups admitting a
cocompact action on an infinitely ended locally finite tree such that vertex stabilizers
are virtually Zn. In the terminology of [MSW03], these are homogeneous graphs
of groups with vertex groups virtually Zn. These groups are notably studied in
[Kro90, For03, Lev07]. For n = 1, examples of groups in D1 are Baumslag–Solitar
groups BS(p, q) =

〈
t, x | txpt−1 = xq

〉
, where 0 < |p| < |q|.

The behaviours of groups in the class Dn with respect to quasi-isometries has
been intensively studied. Mosher–Sageev–Whyte showed that every finitely generated
group that is QI to a group in Dn must belong to Dn [MSW03]. As for the internal
QI classification, the situation splits into two distinct behaviours. In the virtually
solvable case, Farb–Mosher showed that the situation is very rigid [FM99]. In the
non-virtually solvable case, Whyte showed that many groups in Dn are QI to each
other, and obtained a description of QI classes [Why01, Why10]. The precise
statement of Whyte’s result is discussed later.

The main purpose of [CLB] is to address the classification of groups in Dn up to
commability, with the wish to compare it with Whyte’s classification up to QI. For, we
exhibit an appropriate class of locally compact groups, that is shown to be invariant
under commability, and in which we are able to extract a commability invariant.

Definition 6.1. For n ≥ 1, let In be the class of locally compact groups O
such that O has a maximal compact normal subgroup KO, and O/KO is virtually
isomorphic to Zp × Rq with p+ q = n.

When n = 1, O/KO is virtually isomorphic either to Z or to R, and the class I1
is precisely the class of locally compact groups with two ends. It also coincides with
the class of locally compact groups QI to Z. However when n ≥ 2, the class In is
a proper subclass of the class of locally compact groups QI to Zn (for instance the
group Isom(Rn) is not in In).

Definition 6.2. For n ≥ 1, let T (n) be the class of locally compact groups G
such that G admits a continuous cocompact action on an infinitely ended locally finite
tree, such that vertex stabilizers are in In.

We note that a discrete group is in In if and only if it is virtually Zn. Hence the
discrete groups in T (n) are precisely the groups in the class Dn mentioned above.
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2. The one-dimensional case

We first discuss the case n = 1. If O ∈ I1 and KO the maximal compact normal
subgroup, one verifies that the homomorphism O → O/KO induces a homomorphism
at the level of commensurators Comm(O) → Comm(O/KO). The latter group is
either Q× or R×; according to whether O/KO is virtually Z or R. In any case,
viewing Q× as a subgroup of R×, we have a homomorphism Comm(O)→ R×.

Let G ∈ T (1). Take T a tree on which G acts as in the definition, and Gv a
vertex stabilizer. Since the tree T is locally finite, vertex stabilizers in G are all
commensurable with each other. In particular these are commensurated subgroups of
G. Hence we have a homomorphism G→ Comm(Gv). Composed with Comm(Gv)→
R×, we obtain a homomorphism ρG : G → R×. One verifies that ρG : G → R× does
not depend on the choice of T . For the group Γ = BS(p, q), the image of ρΓ is the
cyclic subgroup of R× generated by p/q.

Theorem 6.3 ([CLB]). Let C1 denote the class of groups G in T (1) such that ρG

has infinite image. Then the class C1 is stable under commability, and if G,H ∈ C1
are commable, then the subgroups ρG(G) and ρH(H) of R× are commensurable.

After the preprint [CLB] started circulating, Tessera informed us that Carette–
Tessera had previously proven Theorem 6.3, as well as the converse of that statement,
several years ago (unpublished).

Note that it is clear from the definition that the class T (1) is stable under taking
quotient by a compact normal subgroup and forming an extension by a compact
normal subgroup. Also it is easy to see that if G belongs to T (1) and H is a closed
cocompact subgroup of G, then H belongs to T (1) (just by restricting the defining
G-action). The contents of the theorem is that if H belongs to T (1) (more precisely,
C1), then so does G (and we have the conclusion about ρG(G) and ρH(H)).

3. The case n ≥ 2

The general case is more involved than the one-dimensional case. If G is a
group in T (n), then similarly as in the case n = 1 one can define a homomorphism
ρG : G → GL(n,R) (where we have identified Comm(O/KO) with a subgroup of
GL(n,R), which admits as a consequence that this homomorphism is well-defined up
to conjugation in GL(n,R)). This extends the previous definition for n = 1. For
discrete groups in T (n), this homomorphism was defined by Whyte and plays a key
role in [Why10].

We are lead to consider the following properties. Given a representation ρ : G→
GL(n,R), consider the conditions:

(I) The only d such that there exists a representation σ : G → GL(d,R) with
the property that σ(G) is relatively compact in GL(d,R) and there is a linear
sujrective G-equivariant map Rn → Rd; is d = 0.

(II) no finite index subgroup of ρ(G) normalizes a non-trivial compact connected
subgroup of GL(n,R).

A sufficient condition implying (I) and (II) is that the representation has Zariski-
dense image.

Theorem 6.4 ([CLB]). For n ≥ 1, let Cn denote the class of groups G in T (n)
such that ρG : G → GL(n,R) verifies (I) and (II). Then the class Cn is stable under
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commability, and if G,H ∈ Cn are commable then the images of ρH and ρG are
commensurable up to conjugation in GL(n,R).

We make some comments:
• For n = 1, condition (I) is equivalent to asking that the representation has
infinite image, and (II) is void. Hence the definition of C1 in the previous
statement is consistent with the one given in Theorem 6.3, and Theorem 6.4
for n = 1 reduces to Theorem 6.3.
• (Leary-Minasyan examples [LM21], already mentioned in Section 2 of Chap-
ter 5). For each n ≥ 2, there exists a finitely generated group Γ that acts
geometrically on Rn×T (where T is a locally finite regular tree of degree≥ 3),
such that the Γ-action on each factor Rn and T is not proper. Such a group
belongs to T (n), and the representation ρΓ : Γ → GL(n,R) has infinite im-
age (contained in a compact subgroup). The group Γ is therefore commable
to Λ = Zn × Fk, where Fk is a free discrete cocompact subgroup in Aut(T ).
The group Λ is also in T (n), and the representation ρΛ : Λ → GL(n,R) is
trivial. So these examples show that Theorem 6.4 does not hold without any
assumption on the representation ρG.

Comparison with the QI classification. As mentioned above, Whyte has
classified the non-virtually solvable discrete groups in T (n) up to QI. When n = 1, the
result is that all non-virtually solvable discrete groups in T (1) that are not virtually
Z × Fk are QI to each other [Why01]. In higher dimension, Whyte showed that if
Γ,Λ in T (n) are QI, then the images of ρΓ and ρΛ are, up to conjugation, Hausdorff
equivalent (i.e. at bounded Hausdorff distance). Moreover the Hausdorff equivalence
class almost determines the QI class of Γ [Why10].

It is interesting to compare Whyte’s classification with Theorem 6.4, because
the latter says that the commability class of a group Γ as in the theorem detects
a finer invariant than the Hausdorff equivalence class of the image of ρΓ, namely
the commensurability class of the image of ρΓ. So for instance the groups BS(p, q),
0 < |p| < |q|, are all QI to each other, but fall into infinitely many commability
classes. Similarly one obtains for every n ≥ 1 infinitely many groups in T (n) that are
all QI to each other but pairwise not commable.

The question of finding examples of finitely generated groups that are QI but not
commable had been originally asked by Cornulier. Examples have been constructed
by Carette and Tessera [Cor18, 19.5.2]. They showed if G is a connected semisimple
Lie group with trivial center and no compact factor and Γ1,Λ1 are two discrete
and cocompact subgroups of G that are not virtually isomorphic, then the groups
Γ = Γ1 ∗ Z and Λ = Λ1 ∗ Z are QI but not commable. Their argument for showing
that Γ and Λ are not commable makes crucial use of the fact that these groups have
infinitely many ends. The above examples are of quite different nature. In particular
they are one-ended.

Lattice embeddings. Our results also provide information, given a discrete
group Γ in T (n), on the locally compact groups into which Γ can embed as a lattice.
We show:

Theorem 6.5 ([CLB]). Let m,n ≥ 1. Let Γ,Λ be discrete groups that belong
respectively to Cm and Cn. Suppose that Γ and Λ sit as lattices in the same locally
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compact group. Then m = n and ρΓ and ρΛ have commensurable images up to
conjugation.

Just as that two finitely generated groups that share a common cocompact en-
velope are QI, two groups that sit as lattices in the same locally compact group are
measure-equivalent (ME) ([Gro93, 0.5.E]). It is worth mentioning that, contrary to
the QI relation, the behaviour of the discrete groups in T (n) with respect to the ME
relation is not known (see [Kid14, HR15]). Recently new results in this setting have
been announced by Gaboriau–Poulin–Tucker-Drob–Tserunyan–Wrobel.



APPENDIX A

Notions from topological dynamics

We refer to [Gla76] for a more comprehensive introduction to the notions pre-
sented here.

1. Preliminaries

Let G be a topological group. A non-empty space X is a G-space if X is endowed
with a continuous action G×X → X. The action (or the G-space X) is minimal if
all orbits are dense.

1.1. Stabilizers and neighbourhood stabilizer. Let X be a G-space. For
x ∈ X, the stabilizer of x in G is the set of elements g ∈ G such that g(x) = x. It is
denoted Gx. The neighbourhood stabilizer of x in G is the set of elements g ∈ G such
that there exists a neighbourhood of x in X on which g acts trivially. It is denoted
G0

x.

1.2. Maps between compact spaces. A continuous surjective map π : Y → X
between compact spaces is called irreducible if every proper closed subset of Y has
a proper image in X. Equivalently, for every non-empty open subset U of Y , there
exists x ∈ X such that π−1(x) ⊂ U . If X is a topological space, we denote by R(X)
the Boolean algebra of regular open subsets of X, and by X̂ the Stone space of R(X).
When X is compact, there is an irreducible map X̂ → X (which is moreover universal
with respect to irreducible maps Y → X) [Gle58].

1.3. Extensions, factors. If X,Y are compact G-spaces and π : Y → X is a
continuous surjective G-equivariant map, we say that X is a factor of Y , and that Y
is an extension of X. If in addition π : Y → X is irreducible, then X is minimal if
and only if Y is minimal. For X,Y minimal, π : Y → X is irreducible if and only if it
is highly proximal, meaning that for every x ∈ X the fiber π−1(x) is compressible
[AG77]. A subset C of X is called compressible if there is y ∈ Y such that for
every neighbourhood U of y, there is g ∈ G such that g(C) ⊂ U .

1.4. G-boundaries. If X is a compact space, we denote by Prob(X) the set of
regular Borel probability measures on X, endowed with the weak*-topology (Prob(X)
is seen as a subspace of the dual of the space of continuous functions on X). The
space Prob(X) is a convex compact space, and the map X → Prob(X) that associates
to x ∈ X the Dirac measure at x is continuous.

Let X be a compact G-space. The G-action on X is proximal if every pair of
points in X is compressible. This is equivalent to asking that every finite subset of
X is compressible. The G-action on X is strongly proximal if the closure of any
G-orbit in Prob(X) contains a Dirac measure. Strongly proximal implies proximal.
Strong proximality is stable under taking factors. The G-action on X is extremely
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proximal if every proper closed subset of X is compressible. Away from the de-
generate situation where X has cardinality two, extremely proximal implies strongly
proximal.

We say that X is a G-boundary if X is both minimal and strongly proximal.
There exists a unique G-boundary ∂FG with the property that any G-boundary is a
factor of ∂FG [Fur73, Prop. 4.6]. This universal G-space ∂FG is referred to as the
Furstenberg boundary of G. A locally compact group G is amenable if and only if
every G-boundary is trivial (a one-point space), if and only if ∂FG is trivial [Gla76,
III.3.1].

1.5. Profinite actions. Let X be a compact totally disconnected G-space. The
G-action on X is profinite if the G-orbit of every clopen subset of X is finite. This
is equivalent to asking that the G-action on X extends to a continuous action of the
profinite completion of G. When X is metrizable, the G-action on X is profinite
if and only if there exists a locally finite rooted tree on which G acts faithfully
by automorphisms such that the G-space ∂T is isomorphic to X. See [GNS00,
Proposition 6.4].

2. The Chabauty topology

If X is a locally compact space, we denote by F(X ) the set of all closed subsets
of X . The sets

O(K;U1, . . . , Un) = {C ∈ F(X ) : C ∩K = ∅; C ∩ Ui 6= ∅ for all i } ,
where K ⊂ X is compact and U1, . . . , Un ⊂ X are open, form a basis for the Chabauty
topology on F(X ). Endowed with this topology, the space F(X ) is compact. When
X is discrete, F(X ) is the set {0, 1}X of all subsets of X , and the above topology is
the product topology on {0, 1}X .

The case of prime importance in this text is the one where X = G is a locally
compact group. In that situation the space Sub(G) of closed subgroups of G is closed
in F(G). In particular Sub(G) is a compact space.

3. Semi-continuous maps

LetX be a compact space and X a locally compact space. A map ϕ : X → F(X ) is
upper semi-continuous if for every compact subsetK of X , {x ∈ X : ϕ(x) ∩K = ∅}
is open in X. It is lower semi-continuous if for every open subset U of X ,
{x ∈ X : ϕ(x) ∩ U 6= ∅} is open in X. Let Xϕ ⊆ X be the set of points where ϕ
is continuous. When ϕ is either upper or lower semi-continuous, and X is second-
countable, Xϕ is a comeager subset of X [Kur28, Theorem VII].

We denote by η : X × F(X ) → X and p : X × F(X ) → F(X ) the projections
to the first and second coordinate. For the following, see [Gla75, Theorem 2.3] and
[AG77, Lemma I.1].

Proposition A.1. Suppose X is a minimal compact G-space, X is a locally
compact G-space, and ϕ : X → F(X ) is G-equivariant and upper or lower semi-
continuous. Then the following hold:

(i) The space

Fϕ := {(x, ϕ(x)) : x ∈ X} ⊆ X ×F(X )
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has a unique non-empty minimal closed G-invariant subset Eϕ, and the space

Tϕ := {ϕ(x) : x ∈ X}
has a unique minimal closed G-invariant subset Sϕ, and p(Eϕ) = Sϕ .

(ii) The extension η : Eϕ → X is highly proximal.
If moreover X is second-countable, then

Eϕ = {(x, ϕ(x)) : x ∈ Xϕ},
and

Sϕ = {ϕ(x) : x ∈ Xϕ}.





APPENDIX B

Micro-supported groups

Let G be a group and X a G-space. The rigid stabilizer RistG(U) of a subset U ⊆
X is the pointwise fixator in G of the complement of U in X: RistG(U) = FixG(X\U).

Definition B.1. The G-action on X is micro-supported if G acts faithfully on
X and RistG(U) acts non-trivially on X for every non-empty open subset U of X.

Since we are assuming the action is faithful, RistG(U) acts non-trivially on X if
and only if RistG(U) is non-trivial. It is sometimes more convenient not to include
faithfulness of the action in the definition, but for simplicity in this text we adopt the
above definition. Being micro-supported is a very strong form of non-freeness of the
action of G on X.

A group G is called micro-supported if G admits a micro-supported action. In
that situation the group G does not necessarily admit a unique micro-supported
action. In other words, the space X as in the definition and the G-action on X are
not necessarily canonically attached to G. However, a reconstruction theorem due to
Rubin asserts that G remembers (the Stone space of) the Boolean algebra of regular
open subsets of X: if G admits micro-supported actions on X and Y , then there exists
an isomorphism of G-spaces X̂ → Ŷ [Rub96]. When X,Y are compact minimal G-
spaces, this theorem can equivalently be stated saying that X,Y admit a common
highly proximal extension. Beyond this abstract result, in certain specific situations it
happens that the group G actually admits a unique micro-supported action satisfying
certain additional properties. Examples of results of this kind appear in [Nek22,
Theorem 2.2.15], and [LN02, GPS99a, Med11, Mat15]. Reconstruction results
of the same flavour are also known in the setting of groups of homeomorphisms and
diffeomorphisms of manifolds [Whi63, Fil82]; or in the setting of group actions on
measured spaces [Dye59].

There is an elementary observation in the study of normal subgroups of groups
admitting a "sufficiently non-free" permutation action, which goes back at least to
Higman (see the historical discussion in §2.2 in [Nek22]), and which is the common
denominator of many proofs of simplicity. It is sometimes referred to as the “dou-
ble commutator lemma”, as it consists of a suitable manipulation involving iterated
commutators of length two. In the setting of micro-supported groups, this lemma
has been used extensively in order to show that many micro-supported groups are
simple, or at least do not have many normal subgroups. In that setting it takes the
following form ([Nek22, Proposition 2.2.4]):

Lemma B.2. Suppose that G admits a micro-supported action on a Hausdorff
space X, and N is a non-trivial normal subgroup of G. Then there is a non-empty
open subset U of X such that N contains RistG(U)′.

49



50 B. MICRO-SUPPORTED GROUPS

Micro-supported groups are the main focus in Chapter 1 and Chapter 4. Examples
appearing there include (this list is by no mean an exhaustive list of micro-supported
groups):

Thompson’s groups. The group F is the group of orientation preserving home-
omorphisms g of the unit interval [0, 1] that are piecewise linear, with finitely many
discontinuity points for the derivative, each one being a dyadic rational, and such
that in restriction to each piece g has the form x 7→ 2nx + q with n ∈ Z and q a
dyadic rational. The groups T and V admit similar descriptions as group of homeo-
morphisms respectively of the circle and of the dyadic Cantor space. See [CFP96].
The group V admits higher dimensional generalizations nV , n ≥ 2, acting on the
Cantor n-cube [Bri04]. This family of groups admits a multitude of variations and
generalizations, which we do not intend to list here.

Weakly branch groups. These are the groups that admit a profinite action on a
compact metrizable totally disconnected space that is minimal and micro-supported.
Equivalently, G is a weakly branch group if there exists a locally finite rooted tree on
which G acts faithfully by automorphisms such that the G-action on the boundary
∂T is minimal and micro-supported. See [BGS03].

Topological full groups. Let Λ be a group acting minimally on the Cantor
space X. The topological full group of this action, denoted F(Λ, X), is the group of
homeomorphisms g ofX such that for every x ∈ X there exist a clopen neighbourhood
U of x and an element γ ∈ Λ such that g(y) = γ(y) for every y ∈ U . Early studies of
topological full groups were carried out in [GPS99b] and [Mat06]. See the survey
[Cor14] for more recent developments, notably [JM13], and additional references.

Groups of piecewise projective homeomorphisms. Consider the action of
PSL2(R) on P1(R) = R∪{∞}. Following [Mon13], if A is a subring of R, we denote
by G(A) the group of homeomorphisms of P1(R) which are piecewise PSL(2, A), each
piece being a closed interval, with breakpoints in the set of ends of hyperbolic elements
of PSL(2, A). Let also H(A) be the stabilizer of the point ∞ in G(A). The actions
of G(A) and H(A) respectively on P1(R) and R are micro-supported. Monod showed
that when A is a dense subring of R, the group H(A) is non-amenable and yet does
not contain any non-abelian free subgroups [Mon13].

Groups acting on trees with almost prescribed local action. Let d ≥ 3,
and let Td be a d-regular tree. Let F � F ′ ≤ Sym(d) be two permutation groups such
that F acts freely transitively. The group G(F, F ′) is the group of automorphisms of
Td whose local actions are in F ′ for all vertices, and in F for all but finitely many
vertices. See [LB16, Section 3] for a formal definition. The action of G(F, F ′) on the
boundary ∂T is micro-supported. These groups were the topic of Chapter 4 of the
author’s PhD thesis [LB15].

Groups of piecewise prescribed automorphisms of trees. Let T be a tree.
To any subgroup G ≤ Aut(T ), one can associate the group P(G) of automorphisms of
T acting piecewise like G [LB17]. The formal definition is as follows. If A is a finite
subtree of T , we let δA be the vertices of A having at least one neighbour that is not
in A. For v ∈ δA, denote by Tv the subtree of T made of vertices whose projection
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on A is the vertex v. The subgroup P(G) of Aut(T ) consists of elements γ ∈ Aut(T )
such that there exists a finite subtree A of T such that for every v ∈ δA there exists
gv ∈ G such that γ and gv coincide on Tv. If the action on G on T is minimal and of
general type and stabilizers of vertices in G are non-trivial, then the action of P(G)
on ∂T is micro-supported [LB17, Section 4].

Neretin groups of almost automorphisms of trees. Let d, k ≥ 2 be integers,
and let Td,k be a rooted tree such that the root has k descendants, and every vertex
distinct from the root has d descendants. We consider the triples of the form (A,B,ϕ),
where A and B are finite subtrees of Td,k containing the root such that |∂A| = |∂B|,
and ϕ is a forest isomorphism between Td,k \A and Td,k \B. Two triples (A,B, ϕ) and
(A′, B′, ϕ′) are equivalent if there exists some finite subtree A′′ containing A∪A′ and
such that ϕ and ϕ′ coincide on Td,k \A′′. The group of almost automorphisms of Td,k,
denoted by Nd,k, is the quotient of the set of all (A,B, ϕ) by the above equivalence
relation. It is naturally a group of homeomorphisms of the boundary ∂Td,k. The
groups Nd,k are compactly generated, simple, totally disconnected locally compact
groups [Kap99, CDM11]. These groups were the topic of Chapter 3 of the author’s
PhD thesis [LB15]. See [BCGM12, ST17, Zhe19b] for remarkable properties of
this family of groups.





APPENDIX C

Geometric actions on metric spaces, commability

We refer to [CH16, DK18] for details and a more comprehensive introduction
to the notions mentioned here.

Let X be a proper metric space. A continuous action of a locally compact group
on a proper metric space X is geometric if it is isometric, proper and cocompact.
Examples include:

• if Γ is a finitely generated discrete group, the action of Γ on any Cayley
graph Cay(Γ, S) of Γ associated to a finite generating subset S, is geometric.
• If G is a compactly generated totally disconnected locally compact group,
the action of G on any Cayley-Abels graph CayAb(G,U, S) of G associated
to a compact open subgroup U and a compact generating subset S (which
is required to be U -bi-invariant), is geometric. Recall that the vertex set
of CayAb(G,U, S) is the coset space G/U , and two cosets g1U and g2U are
connected by an edge if there is s ∈ S±1 such that g2 = g1s. The graph
CayAb(G,U, S) is connected and locally finite. When G is discrete and U is
the trivial subgroup, this reduces to the previous item. Cayley-Abels graphs
exist more generally for locally compact groups G such that the identity
component G0 is compact.
• If G is a connected Lie group, K is a compact subgroup of G, and d a G-
invariant Riemannian metric onG/K, theG-action on (G/K, d) is geometric.

If X is a proper metric space, the group Isom(X) of bijective isometries of X,
equipped with the compact-open topology, is a second countable locally compact
group. If a locally compact group G admits a geometric action on X, then the
associated homomorphism G→ Isom(X) is continuous, has a compact kernel, and a
closed cocompact image. Hence G→ Isom(X) can be seen as the composition of the
factor homomorphism G → G/K where K is the compact kernel, and the injective
homomorphism from G/K in Isom(X), which has a closed cocompact image. The
existence of a geometric action of G on X implies that G is σ-compact.

Definition C.1. The relation of commability among locally compact groups is
the equivalence relation generated by G ∼ G/K for K a compact normal subgroup
of G, and G ∼ H for H a closed cocompact subgroup of G.

For σ-compact groups (which includes the case of compactly generated groups),
commability can be characterized as follows: G,H are commable if and only if there
exist locally compact groups G0, . . . , Gn with G0 = G and Gn = H such that for each
i there exists a proper metric space on which Gi and Gi+1 both act geometrically. In
other words, commability is the transitive closure of the relation of having a geometric
action on the same proper metric space. We note that the relation of having a
geometric action on the same proper metric space is clearly reflexive and symmetric,
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but is indeed not transitive, as follows from the existence of two finitely generated
virtually free groups with no geometric action on the same space [MSW03, Corollary
10].

Two groups are called virtually isomorphic if they have finite index subgroups
that are isomorphic, and virtually isomorphic up to finite kernel if they have finite
index subgroups that are isomorphic after modding out by a finite normal subgroup.
Groups that are virtually isomorphic up to finite kernel are obviously commable.

If G is a compactly generated locally compact group, G can be equipped with the
word metric associated to some compact generating subset. Two compact generating
subsets yield bi-Lipschitz equivalent word metrics. In particular G has a well-defined
quasi-isometry type. If two compactly generated locally compact groups G,H act ge-
ometrically on the same proper metric space, then the locally compact version of the
Milnor-Schwarz lemma asserts that G,H are quasi-isometric (QI). This fundamen-
tal observation is the source of most familiar instances of quasi-isometries between
groups. Since being QI is an equivalence relation, two commable compactly generated
groups are QI. So the commability relation sits between the relation of being virtually
isomorphic up to finite kernel and the QI relation (but is in spirit closer to the QI
relation).

For a finitely generated discrete group Γ, the QI-rigidity problem for Γ asks for a
description of all groups that are QI to Γ. That problem is sometimes restricted to
the realm of discrete groups (i.e. describe all finitely generated discrete groups QI to
Γ). See [DK18, Chapter 25] for a survey on QI-rigidity. Similarly, the commability
problem for Γ asks for a description of all finitely generated discrete groups, or more
generally compactly generated locally compact groups, commable to Γ. That problem
admits the following sub-problems:

(1) Describe all locally compact groups G that contain a discrete and cocompact
subgroup isomorphic to Γ. Such a group G is called a cocompact envelope
of Γ. If Γ acts faithfully and geometrically on a proper metric space X,
then the group Isom(X) is a cocompact envelope of Γ. Hence, although
we are more focussed on the groups rather than the spaces, (1) is tightly
connected to the study of proper metric spaces on which Γ can act faithfully
and geometrically.

(2) Describe the discrete groups Λ such that there is a locally compact group G
such that G is a common cocompact envelope of Γ and Λ. Equivalently, these
are the groups Λ such that there is a proper metric space on which Γ and
Λ both act faithfully and geometrically. We note that in such a situation
the groups Γ and Λ are then measure-equivalent (ME), so (2) is not only
connected to QI-rigidity, but also to ME-rigidity.

The above problems are also often considered when Γ is not a fixed group, but a
member of a class of groups C. In that realm the QI-rigidity problem (resp. comma-
bility problem) asks whether the class C is stable under QI (resp. under commability).
Similarly (1) and (2) above can be considered for a class C rather than a single group.
The results presented in Chapter 5 and Chapter 6 fall into this setting.



Bibliography

[AG77] J. Auslander and S. Glasner, Distal and highly proximal extensions of minimal flows,
Indiana Univ. Math. J. 26 (1977), no. 4, 731–749. MR 442906

[AM07] G. Arzhantseva and A. Minasyan, Relatively hyperbolic groups are C∗-simple, J. Funct.
Anal. 243 (2007), no. 1, 345–351. MR 2291441

[Ari22] Ryoya Arimoto, On the type of the von Neumann algebra of an open subgroup of the
Neretin group, Proc. Amer. Math. Soc. Ser. B 9 (2022), 311–316. MR 4449667

[Bau72] G. Baumslag, A finitely presented metabelian group with a free abelian derived group of
infinite rank, Proc. Amer. Math. Soc. 35 (1972), 61–62.

[BCGM12] Uri Bader, Pierre-Emmanuel Caprace, Tsachik Gelander, and Shahar Mozes, Simple
groups without lattices, Bull. Lond. Math. Soc. 44 (2012), no. 1, 55–67. MR 2881324

[BCH94] M. Bekka, M. Cowling, and P. de la Harpe, Some groups whose reduced C∗-algebra
is simple, Inst. Hautes Études Sci. Publ. Math. (1994), no. 80, 117–134 (1995).
MR 1320606

[BFS19] Uri Bader, Alex Furman, and Roman Sauer, An adelic arithmeticity theorem for lattices
in products, Math. Z. (2019), To appear.

[BFS20] , Lattice envelopes, Duke Math. J. 169 (2020), no. 2, 213–278. MR 4057144
[BG00] L. Bartholdi and R. I. Grigorchuk, On the spectrum of Hecke type operators related to

some fractal groups, Tr. Mat. Inst. Steklova 231 (2000), no. Din. Sist., Avtom. i Beskon.
Gruppy, 5–45. MR 1841750

[BGL24] Uri Bader, Tsachik Gelander, and Arie Levit, Spectral gap for products and a strong
normal subgroup theorem, arXiv:2411.07033 (2024).

[BGS03] Laurent Bartholdi, Rostislav I. Grigorchuk, and Zoran Suniḱ, Branch groups, Handbook
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