THE COMMENSURATOR OF A COCOMPACT LATTICE IN THE AUTOMORPHISM GROUP OF A REGULAR TREE IS NOT VIRTUALLY SIMPLE

ABSTRACT. We show that the commensurator of a cocompact lattice in the automorphism group $\operatorname{Aut}(T_k)$ of a regular tree T_k is not virtually simple.

Let $k \geq 3$, and T_k the k-regular tree. We denote by $\operatorname{Aut}(T_k)$ the group of automorphisms of the tree T_k . With its natural topology, $\operatorname{Aut}(T_k)$ is a totally disconnected locally compact group.

Theorem 1. Let Γ be a cocompact lattice in $G = \operatorname{Aut}(T_k)$. Then the commensurator $\operatorname{Comm}_G(\Gamma)$ of Γ in G is not virtually simple. More precisely, $\operatorname{Comm}_G(\Gamma)$ admits a proper quotient with infinite order elements.

For Γ , G as in the theorem, the subgroup $\mathrm{Comm}_G(\Gamma)$ is a dense subgroup of G [BK90, LMZ94]. The question whether the type preserving index two subgroup of $\mathrm{Comm}_G(\Gamma)$ is simple had been raised by Lubotzky–Mozes–Zimmer [LMZ94]. See Section 2 for previous results regarding this question.

Acknowledgments. We are grateful to Nir Lazarovich for a comment suggesting that the considerations in Theorem 5.5 in [BELB⁺25] shall probably lead to non-simplicity of the group $Comm_G(\Gamma)$.

1. Preliminaries on abstract commensurators

Let A be a finite index subnormal subgroup of a group Γ . We denote by $CF(\Gamma;A)$ the set of isomorphism classes of composition factors appearing in some (equivalently, any) composition series which starts from A and ends with Γ [BELB⁺25]. Each composition factor appears with a certain multiplicity; and $CF(\Gamma;A)$ takes into account these multiplicities.

Lemma 2. Let A, B, C, D be finite index subnormal subgroups of Γ , and suppose $\varphi : A \to B$ and $\psi : C \to D$ are isomorphisms. Suppose $CF(\Gamma; A) = CF(\Gamma; B)$, and suppose $[\varphi] = [\psi]$ in the commensurator $Comm(\Gamma)$ of Γ . Then $CF(\Gamma; C) = CF(\Gamma; D)$.

Proof. Take E a finite index subgroup of $A \cap C$ on which φ and ψ coincide (actually we will only use that $\varphi(E)$ is equal to $\psi(E)$). Upon passing to a smaller subgroup one can assume E is normal in Γ . Set $F := \varphi(E) = \psi(E)$. Since E is normal in A, F is normal in B. So F is subnormal in Γ . One has $CF(\Gamma; E) = CF(\Gamma; A) \sqcup CF(A; E)$ and $CF(\Gamma; F) = CF(\Gamma; B) \sqcup CF(B; F)$. Using $CF(\Gamma; A) = CF(\Gamma; B)$ and CF(A; E) = CF(B; F) (since φ is an isomorphism between A and B that sends E to E), we infer E0 in E1 is an isomorphism between E2 in E3 in E4 is an isomorphism between E5 in E6 in E7 in E8. Now E9 is an isomorphism between E9 and E9 that sends E9 to E9. Now E9 is an isomorphism between E9 and E9 that sends E9 to E9. Combined with the previous equality, this yields

Date: November 26, 2025.

 $CF(\Gamma; C) \sqcup CF(C; E) = CF(\Gamma; D) \sqcup CF(C; E)$. Removing CF(C; E) in this equality is allowed, and yields $CF(\Gamma; C) = CF(\Gamma; D)$.

We recall two definitions from $[BELB^+25]$:

- For each finite index subgroup H of Γ , there is a natural homomorphism $\operatorname{Aut}(H) \to \operatorname{Comm}(\Gamma)$, and $\operatorname{AComm}(\Gamma)$ is the subgroup of $\operatorname{Comm}(\Gamma)$ generated by the images of $\operatorname{Aut}(H) \to \operatorname{Comm}(\Gamma)$ when H ranges over finite index subgroups of Γ .
- Comm_{SN}(Γ) is the set of elements of Comm(Γ) which can be represented by an isomorphism $\varphi: A \to B$ such that A and B are finite index subnormal subgroups of Γ such that $CF(\Gamma; A) = CF(\Gamma; B)$.

[BELB⁺25, Lemma 2.22] ensures AComm(Γ) is a normal subgroup of Comm(Γ) provided Γ is finitely generated. And [BELB⁺25, Theorem 5.5] shows that

- (1) $\operatorname{Comm}_{SN}(\Gamma)$ is a subgroup of $\operatorname{Comm}(\Gamma)$.
- (2) $AComm(\Gamma)$ is contained in $Comm_{SN}(\Gamma)$ provided Γ is finitely generated.

If A, B are finite index subnormal subgroups of a group Γ , we write $CF(\Gamma; A) \leq CF(\Gamma; B)$ if every composition factor appearing in $CF(\Gamma; A)$ also appears in $CF(\Gamma; B)$. This definition only asks that composition factors appear; it does not take multiplicities into account. We say that $CF(\Gamma; A)$ and $CF(\Gamma; B)$ are equivalent if $CF(\Gamma; A) \leq CF(\Gamma; B)$ and $CF(\Gamma; B) \leq CF(\Gamma; A)$.

Proposition 3. Let Γ be a finitely generated group. Let A, B be finite index subnormal subgroups of Γ , and suppose $\varphi : A \to B$ is an isomorphism. If $CF(\Gamma; A)$ and $CF(\Gamma; B)$ are not equivalent, then the element $[\varphi]$ of $Comm(\Gamma)$ has infinite order in the quotient $Comm(\Gamma)/AComm(\Gamma)$.

Proof. We define inductively a sequence (A_n, B_n, f_{n+1}) where A_n, B_n are finite index subnormal subgroups of Γ , $\hat{f}_{n+1}:A_n\to B_n$ is an isomorphism such that $[f_{n+1}] = [\varphi]^{n+1}$ in Comm (Γ) , $CF(\Gamma; A_n)$ and $CF(\Gamma; A)$ are equivalent and $CF(\Gamma; B_n)$ and $CF(\Gamma; B)$ are equivalent. We set $A_0 = A$, $B_0 = B$ and $f_1 = \varphi$. Now suppose (A_n, B_n, f_{n+1}) have been constructed. We verify that $A_{n+1} = \varphi^{-1}(A_n \cap B)$, $B_{n+1} = f_{n+1}(A_n \cap B)$, and $f_{n+2} = f_{n+1} \circ \varphi : A_{n+1} \to B_{n+1}$ verify the required properties. Note that B_{n+1} is a subgroup of B_n . By definition of the composition in Comm(Γ) one has $[f_{n+2}] = [f_{n+1}][\varphi]$. Hence $[f_{n+2}] = [\varphi]^{n+1}[\varphi] = [\varphi]^{n+2}$. Since A_n is subnormal in Γ , $B \cap A_n$ is subnormal in B, and consequently $A_{n+1} = \varphi^{-1}(A_n \cap B)$ is subnormal in $\varphi^{-1}(B) = A$. Hence A_{n+1} is subnormal in Γ . Similarly B_{n+1} is subnormal in B_n , and hence in Γ . Since $A_{n+1} \leq A \leq \Gamma$, we have $CF(\Gamma; A_{n+1}) =$ $CF(\Gamma;A) \sqcup CF(A;A_{n+1})$. Since φ is an isomorphism from A to B sending A_{n+1} to $B \cap A_n$, we also have $CF(A; A_{n+1}) = CF(B; B \cap A_n)$. Now intersecting with B a composition series associated to A_n , it is easily seen that $CF(B; B \cap A_n) \leq CF(\Gamma; A_n)$. Since $CF(\Gamma; A_n) \leq CF(\Gamma; A)$, we deduce $CF(B; B \cap A_n) \leq CF(\Gamma; A)$, and hence $CF(\Gamma; A_{n+1}) \leq CF(\Gamma; A)$. Since we also have $CF(\Gamma; A) \leq CF(\Gamma; A_{n+1})$, it follows that $CF(\Gamma; A)$ and $CF(\Gamma; A_{n+1})$ are equivalent. A similar argument yields $CF(\Gamma; B)$ and $CF(\Gamma; B_{n+1})$ are equivalent. We have thus verified all the properties.

Now assume $CF(\Gamma; A)$ and $CF(\Gamma; B)$ are not equivalent. Then $CF(\Gamma; A_n)$ and $CF(\Gamma; B_n)$ are not equivalent, and hence are not equal. Lemma 2 therefore implies $[f_{n+1}]$ does not belong to $Comm_{SN}(\Gamma)$. Since $AComm(\Gamma)$ is contained in $Comm_{SN}(\Gamma)$, the image of $[f_{n+1}]$ is non-trivial in the quotient $Comm(\Gamma)/AComm(\Gamma)$.

2. The commensurator of a cocompact lattice in the automorphism group of a regular tree

Let $k \geq 3$, and T_k the k-regular tree. Let W be the free product of k copies of the cyclic group of order 2 (the free Coxeter group of rand k). We fix $a_1, \ldots, a_k \in W$ such that $a_i^2 = 1$ and a_1, \ldots, a_k generate W. We identify the tree T_k with the Cayley graph of W associated to a_1, \ldots, a_k . This means that there is a vertex v_0 in T_k corresponding to the identity element, and that there is a coloring of the edges of T_k by the elements of $\{1, \ldots, k\}$, where an edge is colored i if it corresponds to an edge between two elements γ and γa_i of W. In particular we view W as a subgroup of $\operatorname{Aut}(T_k)$. It is a cocompact lattice because W acts freely and transitively on vertices of T_k . Note that W is exactly the subgroup of $\operatorname{Aut}(T_k)$ preserving the coloring.

Following [LMZ94], we denote by C_k the commensurator of W in $\operatorname{Aut}(T_k)$. Any cocompact lattice Γ of $\operatorname{Aut}(T_k)$ admits a conjugate that is commensurable with W in $\operatorname{Aut}(T_k)$, and hence has a commensurator in $\operatorname{Aut}(T_k)$ that is conjugate to C_k [BK90, 4.15-4.17]. Hence Theorem 1 is equivalent to the corresponding assertion about the group C_k . The group C_k is known to be monolithic (i.e. admits a non-trivial normal subgroup contained in any other non-trivial normal subgroup) [LMZ94, Cap20]. Moreover Lubotzky–Mozes–Zimmer showed that the monolith M_k of C_k contains the type preserving index two subgroup of W [LMZ94, Proposition 5.1], and Caprace showed that M_k is a simple group [Cap20, Theorem A.1]. Theorem 1 asserts that M_k has infinite index in C_k , and the quotient C_k/M_k admits infinite order elements.

We will make use of the interpretation of elements of the stabilizer of v_0 in C_k as recoloring of finite graphs. The setting is the following. Let X be a finite connected k-regular graph (every vertex has k adjacent edges). Edges are non-oriented. We allow an edge to be a loop, and we also allow multiple edges. By a coloring c of X we mean an assignment for each edge of X of an element in $\{1, \ldots, k\}$ (the color of that edge) such that for every vertex, the k adjacent edges have different colors. If c is a coloring of X and x_0 a vertex of X, there exists a unique color preserving map $\pi: T_k \to (X, c)$ such that $\pi(v_0) = x_0$, and this map is surjective.

Associated to a coloring of X there is an action of W on the vertex set VX. It is defined by declaring that a_i flips all pairs of distinct vertices joined by an edge with color i, and a_i fixes all vertices for which the adjacent edge with color i is a loop. By the universal property of free products, this indeed defines an action of W on VX. Note that the graph and the coloring encode the action on VX, but the action needs not preserve the graph structure.

We refer to Section 2 (notably to Propositions 2.2 and 2.4) in [LMZ94] for the following.

Proposition 4. Let X be a finite connected k-regular graph, and x_0 a vertex of X. Let c_1, c_2 be two colorings of X, and for i = 1, 2 let H_i be the stabilizer of x_0 in W for the action of W on VX associated to c_i . Then one can associate to the pair (c_1, c_2) an element $g \in \operatorname{Aut}(T_k)$ such that $g(v_0) = v_0$ and $gH_1g^{-1} = H_2$ (in particular g belongs to C_k).

The definition of g goes as follows. The pair (c_1, c_2) gives rise to a collection of permutations $(\sigma_x)_{x \in VX}$ of $\{1, \ldots, k\}$, defined by the property that for every $x \in VX$ and every edge e adjacent to x, the coloring c_2 is given by $c_2(e) = \sigma_x(c_1(e))$. The element g associated to X, x_0, c_1, c_2 is then the element of $\operatorname{Aut}(T_k)$ determined by the condition $g(v_0) = v_0$ and the local action of g around a vertex v of T_k is given by the permutation $\sigma_{\pi(v)}$, where $\pi: T_k \to (X, c_1)$ is the unique color preserving map such that $\pi(v_0) = x_0$. We refer to [LMZ94] for details.

Proof of Theorem 1. As explained above, one has to show C_k has a proper quotient with infinite order elements. Since the only element of $\operatorname{Aut}(T_k)$ centralizing a finite index subgroup of W is the identity, the natural homomorphism $C_k \to \operatorname{Comm}(W)$ is injective [BK90, B.7]. In the sequel we identify C_k with its image in $\operatorname{Comm}(W)$. We consider the image of C_k in $\operatorname{Comm}(W)/\operatorname{AComm}(W)$. Since C_k intersects $\operatorname{AComm}(W)$ along an infinite normal subgroup (because W is contained in $\operatorname{AComm}(W)$), to obtain the conclusion it is enough to show that the image of C_k in $\operatorname{Comm}(W)/\operatorname{AComm}(W)$ admits infinite order elements.

We fix an integer $s \geq 3$, and let $r = 2^s$. Let X be the k-regular graph with r vertices x_0, \ldots, x_{r-1} , with an edge e_i between x_i and x_{i+1} for every $i = 0, \ldots, r-2$, and such that all other edges are loops. We consider a coloring c_1 of X such that edges $e_0, e_2, \ldots, e_{r-2}$ have color 1, and edges $e_1, e_3, \ldots, e_{r-3}$ have color 2 (how c_1 is defined on other edges will not matter). The permutation group on VX induced by the W-action associated to c_1 is the dihedral group of order 2r. In particular it is a 2-group. Hence the stabilizer H_1 of x_0 in W is a subnormal subgroup of W, and $CF(W; H_1)$ is made of the cyclic group of order 2 with multiplicity r/2.

We now define a coloring c_2 of X by starting from c_1 , and specifying for each vertex x of X a permutation of $\{1,\ldots,k\}$. For vertices x_3,\ldots,x_{r-1} , we take the identity. In other words c_2 coincide with c_1 on all edges adjacent to those vertices. For x_0, x_1, x_2 , we take respectively (12), (123), (23). So exactly five edges have changed color, among which e_0, e_1 , which were previously colored 1 and 2 and are now colored 2 and 3. The element a_3 acts on VX as a transposition, and the supports of a_1 and a_3 intersect along a singleton, and similarly for a_2 and a_3 . One then easily verifies that the permutation group on VX induced by the W-action associated to c_2 is the symmetric group $\mathrm{Sym}(r)$. As before we denote by H_2 the stabilizer of x_0 in W.

Proposition 4 applied to X, x_0, c_1, c_2 provides $g \in C_k$ such that $gH_1g^{-1} = H_2$. Let $B = \operatorname{Core}_W(H_2)$, and $A = g^{-1}Bg$, so that conjugation by g defines an isomorphism $A \to B$. The subgroup B is normal in W, and CF(W;B) contains the cyclic group of order 2 and $\operatorname{Alt}(r)$ (because $s \geq 3$), both with multiplicity 1. The subgroup A is normal in H_1 , and H_1 is subnormal in W, so A is subnormal in W. And by the description of $CF(W;H_1)$ given above, we infer that CF(W;A) contains the cyclic group of order 2 with multiplicity at least r/2. Cardinality of the index of A in A0 (which is A1) therefore prevents A1(A2) from appearing in A3. Hence A4 and A4 and A5 are not equivalent. Proposition 3 applies, and asserts that the image of A5 in A6 in A7.

References

[BELB⁺25] Yiftach Barnea, Mikhail Ershov, Adrien Le Boudec, Colin Reid, Matteo Vannacci, and Thomas Weigel, *On commensurators of free groups and free pro-p groups*, https://arxiv.org/abs/2507.04120.

- [BK90] H. Bass and R. Kulkarni, *Uniform tree lattices*, J. Amer. Math. Soc. **3** (1990), no. 4, 843–902.
- [Cap20] P.-E. Caprace, Almost simplicity of commensurators of free groups, Canad. J. Math. 72 (2020), no. 6, 1624–1690, Appendix to the paper New simple lattices in products of trees and their projections by N. Radu.
- [LMZ94] A. Lubotzky, S. Mozes, and R. J. Zimmer, Superrigidity for the commensurability group of tree lattices, Comment. Math. Helv. **69** (1994), no. 4, 523–548. MR 1303226

CNRS, UMPA - ENS Lyon, 46 allée d'Italie, 69364 Lyon, France $E\text{-}mail\ address:\ \texttt{adrien.le-boudec@ens-lyon.fr}$