RIGIDITY AND FLEXIBILITY RESULTS FOR GROUPS WITH A
COMMON COCOMPACT ENVELOPE
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ABSTRACT. A locally compact group G is a cocompact envelope of a group I' if G
contains a copy of I' as a discrete and cocompact subgroup. We study the problem
that takes two finitely generated groups I', A having a common cocompact envelope,
and asks what properties must be shared between I and A.

We first consider the setting where the common cocompact envelope is totally
disconnected. In that situation we show that if I' admits a finitely generated
nilpotent normal subgroup A, then virtually A admits a normal subgroup B such
that A and B are virtually isomorphic.

We establish both rigidity and flexibility results when I' belongs to the class of
solvable groups of finite rank. On the rigidity perspective, we show that if I" is
solvable of finite rank, and the locally finite radical of A is finite, then A must be
virtually solvable of finite rank. On the flexibility perspective, we exhibit groups
', A with a common cocompact envelope such that I' is solvable of finite rank,
while A is not virtually solvable. In particular the class of solvable groups of finite
rank is not QI-rigid. We also exhibit flexibility behaviours among finitely presented
groups, and more generally among groups with type F), for arbitrary n > 1.

INTRODUCTION

Let G be a locally compact group. A subgroup I' of G is a lattice if T' is dis-
crete in G and G/I' admits a G-invariant finite measure. The study of interactions
between properties of G and properties of its lattices is a rich topic, involving geo-
metric, analytic and ergodic aspects. The ambient group G being fixed, the problem
of classifying all lattices of G has been intensively studied; historically first in the
prominent case of connected Lie groups and algebraic groups over local fields, and
gradually for some more locally compact groups. In this paper we are concerned with
a different problem, which takes as input a group I' and aims at studying the discrete
groups A such that I' and A sit as lattices in a common locally compact group.

We fix some terminology. Let I' be a discrete group. A locally compact group
G is called an envelope of I if G contains a lattice isomorphic to I' [Fur67]. When
the given lattice is cocompact, we say that G is a cocompact envelope of I'. We will
mainly focus on the case of cocompact envelopes. We say that two discrete groups I
and A share a cocompact envelope if there is a locally compact group G such that G
is a common cocompact envelope of I' and A.

Recall that an action of a group on a proper metric space by isometries is called
geometric if the action is proper and cocompact. For finitely generated groups I' and
A, the existence of a common cocompact envelope is equivalent to the existence of
a proper metric space on which T' and A both act faithfully and geometrically (see
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e.g. [CHI6, 4.C-5.B]). When this holds, the Milnor-Schwarz lemma asserts that the
groups I and A are quasi-isometric (QI hereafter).

Two groups are called virtually isomorphic if they have finite index subgroups that
are isomorphic, and virtually isomorphic up to finite kernel if they have finite index
subgroups that are isomorphic after modding out by a finite normal subgroup.

Definition 1. Let C be a class of finitely generated groups. We say that C is rigid
for cocompact envelopes if for every group A that shares a cocompact envelope with
a group [ in C, the group A is virtually isomorphic up to finite kernel to a group in
C. We write “CE-rigid” for “rigid for cocompact envelopes”.

Recall a class C is Ql-rigid if for every group A that is QI to a group I' in C, the
group A is virtually isomorphic up to finite kernel to a group in C. If C is Ql-rigid
then C is CE-rigid. Hence the question of CE-rigidity of a given class is relevant either
when QI-rigidity is not known, or when QI-rigidity is known to fail. More targeted
towards locally compact groups, there is the problem of “describing” all cocompact
envelopes of a group I' in C. This problem and the problem of CE-rigidity are both
sub-cases of the more general problem of studying all locally compact groups that
are commable to a group I' in C (see for the definition of two groups being
commable).

Totally disconnected common cocompact envelope. We first focus on the sit-
uation where the common cocompact envelope G of two groups I and A is a totally
disconnected locally compact group. For finitely generated groups I' and A, the ex-
istence of a common totally disconnected cocompact envelope is equivalent to the
existence of a connected locally finite graph on which I' and A act faithfully and
geometrically. Indeed, if X is such a graph, then the group of automorphisms of X is
a common totally disconnected cocompact envelope. And conversely if G is such an
envelope, then I' and A act geometrically on any Cayley-Abels graph of G (see e.g.
[CH16, 2.E.9] for Cayley-Abels graphs), and I" and A act faithfully on such a graph
provided the associated compact open subgroup of G is sufficiently small. See in ad-
dition the beginning of Section [2] for the relevance of considering totally disconnected
envelopes.

Our first result deals with the class of groups I having a finitely generated nilpotent
normal subgroup. We prove:

Theorem 1. Let I' be a finitely generated group with a normal subgroup A <{T' such
that A is finitely generated and nilpotent. Suppose that T' and A share a totally
disconnected cocompact envelope. Then there is a finite index subgroup A’ of A such
that A" admits a normal subgroup B <A\’ such that A and B are virtually isomorphic.

It is worth comparing Theorem [1| with the situation where I' and A share a cocom-
pact envelope, but this envelope is not necessarily totally disconnected. Equivalently,
the situation where we have two groups I' and A and a proper metric space on which
I' and A both act faithfully and geometrically, but the metric space acted upon is not
necessarily a graph. The groups studied by Leary-Minasyan in [LM21] include exam-
ples of groups I and A acting faithfully and geometrically on R? x T - the product
of the d-dimensional Euclidean space R? and a locally finite tree T - such that I" is
of the form I' = A x F with A = Z¢ and F is a non-abelian free group of finite rank,
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and such that A does not virtually admit any non-trivial abelian (or nilpotent) nor-
mal subgroup. Here the common cocompact envelope is Isom(R%) x Aut(T). Hence
these examples show that Theorem [I] does not hold when the common envelope is
not totally disconnected.

It is also interesting to connect the setting of Theorem [I| with other rigidity results
for groups with a commensurated finitely generated nilpotent subgroup. We refer the
reader to the discussion in

A main tool in the proof of Theorem [I]is Theorem 2.8 below. The discussion of this
statement, as well as the other consequences that we derive from it, are postponed
for the moment.

Solvable groups of finite rank. We turn our attention to CE-rigidity for solvable
groups. As observed by Erschler, the entire class of solvable groups is not CE-rigid.
If I, F5 are two finite groups of the same cardinality, the wreath products I' = F11Z
and A = F» 1 Z admit a common Cayley graph, and hence a common cocompact
envelope (the automorphism group of this Cayley graph). And I is solvable provided
F is, while A is not virtually solvable provided F; is not solvable [Dyu00]. (Recall
that being virtually isomorphic up to finite kernel to a solvable group is the same as
being virtually solvable.)

Here we focus on the class of solvable groups of finite rank. Recall that a solvable
group I' is of finite rank if there is an integer k£ such that every finitely generated
subgroup of I' can be generated by at most k elements. A wreath product A1 B
is never of finite rank provided A is non-trivial and B is infinite. Every polycyclic
group is of finite rank. The solvable Baumslag—Solitar group Z[1/n] x,, Z, n > 2, is
non-polycyclic but is of finite rank. More generally, every finitely generated solvable
group that is linear over Q is of finite rank. The finitely generated solvable groups
linear over Q are precisely the finitely generated solvable groups of finite rank that
are virtually torsion-free.

The large-scale geometry and QI-rigidity of certain families of non-polycyclic solv-
able groups of finite rank have been studied by Farb-Mosher in [FM98, [FM99,
FMO00Oa]. In the case of I' = Z[1/n] X,, Z, the main result of [FM99] establishes
the strongest possible form of QI-rigidity: if A is a group QI to T, then A is virtually
isomorphic up to finite kernel to I'.

We establish both positive and negative results about CE-rigidity for the class of
solvable groups of finite rank. In the direction of rigidity, we have the following;:

Theorem 2. Let I' be a finitely generated solvable group of finite rank. Let A such
that T' and A share a cocompact envelope. Suppose that A has no normal subgroup
that is infinite and locally finite. Then A is virtually solvable of finite rank.

On the flexibility side, we provide two constructions that show CE-rigidity fails
for the class of solvable groups of finite rank. These show that the assumption in
Theorem [2| that A has no normal subgroup that is infinite and locally finite is truly
needed. We refer the reader to the end of this introduction for an outline of these
constructions. The first one yields:

Theorem 3. There exist finitely generated groups I'; A that share a cocompact enve-
lope, with T’ solvable of finite rank, and A not virtually solvable.

We exhibit examples of I' and A as in the theorem that are rather small. The
group I' can be taken of the form I' = Z[1/n]? x Z for n > 2 (so T is abelian-by-Z
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and of Hirsch number 3), and A can be taken to be Z2 x F{ Z for arbitrary finite
group F of cardinality n (in particular non virtual solvability of A arises similarly as
in [Dyu00]).

Our examples of groups I and A as in Theorem [3| are not finitely presented. How-
ever our second construction that shows CE-rigidity fails for the class of solvable
groups of finite rank includes finitely presented groups, and even groups with higher
finiteness properties. Recall that a group I' has type F,,, n > 1, if there exists a CW-
complex with finite n-skeleton, with fundamental group I' and contractible universal
cover [Wal65|. F,4;1 implies F,,, and F; and Fj are respectively equivalent to be-
ing finitely generated and being finitely presented. Having type F,, is a QI-invariant
[DK18, Theorem 9.56].

Theorem 4. For every n > 1, there are groups I', A of type F,, such that I', A share
a cocompact envelope, and:

e I'. A are solvable;
e [' is of finite rank and torsion-free;
e A is neither of finite rank, nor virtually torsion-free.

As a consequence of Gromov’s polynomial growth theorem, the class of finitely
generated nilpotent groups is QI-rigid. It is not known whether the class of polycyclic
groups is QI-rigid [FMOOD, [Sha04, [EFWO07, [EF10]. Eskin—Fisher—-Whyte conjectured
a positive answer [EFW07, [EF10, Conjecture 1.2]. Shalom had previously showed
that any infinite group QI to a polycyclic group has a positive first virtual Betti
number [Sha04]. Eskin-Fisher—-Whyte showed that the class of cocompact lattices in
the Lie group Sol is QI-rigid [EFW12,[EFW13]. Generalizations to higher dimensional
examples have been obtained by Peng [Penllal, [Penllb]. We refer to [DK18, Chapter
25] for a survey on Ql-rigidity (especially outside the amenable situation, on which
the present discussion is focussed).

Conjectural Ql-rigidity of the class of polycyclic groups motivates the problem
of investigating Ql-rigidity for classes of solvable groups that contain the class of
polycyclic groups, and are in a sense as close as possible to the class of polycyclic
groups. Theorem |3] and Theorem |4] contribute to this problem, as they have the
following consequences:

Corollary 5. The class of finitely generated solvable groups of finite rank is not QI-
rigid. More generally, for every n > 1, the class of solvable groups of finite rank of
type F,, is not QI-rigid.

One can further ask about CE-rigidity for the class of solvable groups of finite rank
of type F. Theorem below asserts that this class of groups is CE-rigid. So the
phenomena exhibited in Theorem [ for groups of type F,, cannot happen for groups
of type Fuo.

We point that that while in Theorem (3| the group A is not virtually solvable, in
Theorem M| both I" and A are solvable. It is an open question whether the class of
finitely presented solvable groups is QI-rigid [EMO0O0Db, Question 4]. We also note that
any two groups I" and A as in Theorem |4| necessarily have the same Hirsch number,
since a result of Sauer asserts that Hirsch number is a QI-invariant among solvable
groups [Sau06].

We make some additional comments relating Theorem [] with results from the
literature:
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e Farb—Mosher showed that the class of non-polycyclic finitely presented groups
that are abelian-by-Z (such groups are necessarily of finite rank) is QI-rigid
[EMO00a]. The fact that the class finitely presented solvable groups of finite
rank is not Ql-rigid (i.e. Corollary [5 for n = 2) implies that this QI-rigidity
result no longer holds beyond the abelian-by-Z case.

e Shalom showed that if T" is solvable of finite rank, and if A is a group QI to
I" such that A is solvable and torsion-free, then A is of finite rank [Sha04]
Theorem 1.6]. Theorem 4| shows that this theorem no longer holds without
the assumption that A is torsion-free.

Examples from [Dyu00] show that the class of finitely generated torsion-free solv-
able groups is not QI-rigid. These examples are wreath products, and hence are not
finitely presented. Theorem [4] shows this failure of QI-rigidity persists even in the
presence of finiteness properties:

Corollary 6. The class of finitely presented torsion-free solvable groups is not QI-
rigid. More generally, for every n > 2 the class of torsion-free solvable groups of type
F,, is not QI-rigid.

Polycyclic groups. We now turn our attention to polycyclic groups. The first
statement of the following theorem asserts that when I' is polycyclic, the additional
assumption on A in Theorem [2 is not needed.

Theorem 7. The class of polycyclic groups is CE-rigid. More generally, every dis-
crete group that is commable to a polycyclic group is virtually polycyclic.

Theorem [7] is a special case of Theorem below, which deals with a class of
locally compact groups whose discrete members are precisely the virtually polycyclic
groups. One consequence of Theorem is that if I' is polycyclic and G is a cocom-
pact envelope of I', then after modding out by a compact normal subgroup, G is an
extension of a connected Lie group and a discrete group. Hence another special case
of Theorem (which is actually an intermediate step in the proof) is that every
totally disconnected cocompact envelope of I' is compact-by-discrete. Recall that a
group is compact-by-discrete if it has a compact normal subgroup whose associated
quotient is discrete. Envelopes that are compact-by-discrete are somehow the trivial
envelopes.

For certain polycyclic groups I', we show that the only cocompact envelopes are the
ones that live within a certain natural envelope. Let d > 2, and let A < SL(d,Z) be a
subgroup such that A ~ ZF and every non-trivial element of A has d distinct positive
eigenvalues. So A is diagonalizable over R, and there are commuting real matrices
X1,..., X, such that, if ¢ : R* — GL(d,R) is the the homomorphism defined by
o(t1,... 1) = exp(t; X1 +- - -+t Xp), then ¢(Z*) = A. The associated connected Lie
group G, = R? % R¥ is then a cocompact envelope of the group I' = Z% x A ~ Z% x Z*.
We show the following:

Theorem 8. Suppose that every non-trivial element of A has d distinct real eigen-
values, which are positive and different from 1. Then every cocompact envelope G of
I' = Z% x A is, up to passing to a finite index subgroup and modding out by a compact
normal subgroup, isomorphic to a closed cocompact subgroup of G, = R? x R¥.

This theorem generalizes a result of Dymarz, who showed Theorem [§] for £ = 1.
Specifically, when d = 2 and k = 1, the group G, = R?* x R is the Lie group



6 ADRIEN LE BOUDEC

Sol, and in that case Theorem |8 is [Dym15, Theorem 1.1.1]. More generally, the
case d > 2 and k = 1 in Theorem [§]is covered by [Dym15, Theorem 1.2]. Dymarz’s
approach relies on fine geometric properties of model spaces, and makes use of rigidity
results about their quasi-isometries from [EFWI12, [EFW13| [Penlial [Penllb]. Our
approach is very different. We rely on structural restrictions on cocompact envelopes
of polycyclic groups established in Theorem [3.6]

Convention. In the remainder of the paper we use the shorthand tdlc for totally
disconnected locally compact.

Outline and organisation. A main tool in the proof of Theorem [I]is Theorem
below. That result also plays a major role in the proof of Theorem [/} Theorem [2.§]
asserts that if A is a finitely generated nilpotent subgroup of a tdlc group G, and
A has a cobounded normalizer in G (see §1.1| for the terminology), then A always
normalizes a compact open subgroup of G. That statement can be thought of as a
poorness property of the dynamics of the global conjugation action of A on G, as it
means that there is an invariant compact neighbourhood of the identity. The proof
of Theorem [2.8 makes use of Willis’ theory. The original form of Willis’ work deals
with the study of the conjugation action of individual elements on a tdlc group G.
The important notion there is the notion of tidy subgroups. We give a very brief
summary of their properties in §2.1] When we move in the study of the conjugation
action on G from the case of an individual acting element to the case of a subgroup
H acting on G, in general very few tools are available. However when H is finitely
generated nilpotent or polycyclic, results of Shalom—Willis ensure the existence of
tidy subgroups common for all elements of H. The proof of Theorem notably
relies on these results. It is given in Section[2] That section also contains the proof of
Theorem|[I} A further application of Theorem [2.8] also given in Section 2] asserts that
if a group I' has a finitely generated nilpotent normal subgroup with the additional
assumption that A is almost self-centralizing in I', then tdlc cocompact envelopes of
I' are compact-dy-discrete (Theorem .

Section [3| mostly deals with polycyclic groups. It contains the proof of Theorem
(of which Theorem [7| is a corollary), as well as the proof of Theorem This
section also ends with another application of Theorem concerning tdlc envelopes
of lattices in Lie groups (§3.3)).

Section [ is dedicated to the proof of Theorem [2] about solvable groups of finite
rank. Although Theorem [2is a generalization of the first assertion of Theorem [7]about
polycyclic groups, the proof takes a different approach. The first goal of Section [4]
is to prove that if G is a cocompact envelope of a finitely generated solvable group
of finite rank, then locally G is the product of its connected component times its
locally elliptic radical. Here by locally we mean that the product of these two form
an open subgroup of G (Theorem |4.2). The proof of that result crucially relies on
works of Shalom and Cornulier—Tessera about property Hpp. Theorem [2]is deduced
from Theorem together with the stability result Proposition (which is the
place where the absence of infinite locally finite normal subgroup is used).

Our flexibility results that lead to Theorem [3]and Theorem [ are proven in Section
Bl Our two constructions consist in embedding some solvable groups of finite rank T’
as cocompact lattices in some (necessarily amenable) locally compact group G, where
G has the structure of a product G = G X Gyq. The factor G, is a virtually connected
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solvable Lie group, and the factor Gy is a totally disconnected group. The group I'
is embedded as an irreducible lattice in G. On the other hand, things are arranged
so that each one of the factors G. and G4 admits a cocompact lattice such that the
product of these produces a group A that fails to be virtually solvable of finite rank.

Our constructions involve the Diestel-Leader graphs DLg4(n), i.e. the subset of the
product of d copies of an (n+1)-regular tree 77 X - - - X T; defined by the equation by +
-+-+bg = 0, where b; is a Busemann function on 7; (see . In our first construction,
we have G. = Isom(R?), the group of isometries of R*, and Gy = Isom(DLy(n)).
This construction provides the examples mentioned below Theorem [3] In our second
construction, we have G, = R? x (R*)4~1 where (R*)4~! is identified with the group
of (d x d)-diagonal matrices of determinant one (so contrary to the previous one, G,
has exponential growth). And Gy = Isom(DLg(n1))x- - -xIsom(DLg(ng)). Andd > 2
and k > 1 are arbitrary. Relying on work of Bartholdi-Neuhauser—Woess [BNW0§],
this is this second construction that leads to Theorem [l As a concrete example, our
smallest finitely presented groups I', A as in Theorem [4] are obtained with d = 3 and
k = 1 and are of the form I' = Z[1/p]>xZ* and A = Z?xZ2xFp[t, t~1, (t+1)"xZ2.
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1. PRELIMINARIES

General conventions. We say that a group is (A)-by-(B) if it has a normal
subgroup with (A) such that the quotient has (B). We denote by Z(I") the center of
a group I'. If A is a subgroup of I'; then the centralizer of A in I is denoted Cr(A).

1.1. On cobounded and cocompact subgroups. We say that a non-necessarily
closed subgroup I' of a locally compact group G is cobounded in G if there is a
compact subset K of G such that TK = G. A subgroup is cocompact if it is closed
and cobounded. Although we are mainly concerned with cocompact subgroups, it will
often be more convenient to work with cobounded subgroups. One reason for that is
the following fact that will be used repeatedly in the sequel: if IV is a closed normal
subgroup of G and I' a cobounded subgroup of G, then the image of I' in G/N
is a cobounded subgroup of G/N (which fails in general for cocompact subgroups
because the image is not necessarily closed). Another basic fact that will be used
without further mention is that if O is an open subgroup of G and I' is cobounded
(resp. cocompact) in G, then I' N O is cobounded (resp. cocompact) in O.

Proposition 1.1. Let I' be a cobounded subgroup of a compactly generated locally
compact group G. Then there exists a finitely generated subgroup I of ' such that T
is cobounded in G.
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Proof. See [Bou63, VIIL.5.3, Proposition 6]. O

1.2. Connected-by-compact groups. The following theorem is due to Yamabe
[MZ55 Theorem 4.6].

Theorem 1.2. Let G be a connected-by-compact locally compact group. Then every
neighbourhood of G contains a compact normal subgroup K such that G/K is a Lie
group with finitely many connected components.

1.3. On the locally elliptic radical. A locally compact group is locally elliptic if
every compact subset is contained in a compact subgroup. For G discrete, locally
elliptic means locally finite, i.e. every finite subset is contained in a finite subgroup.
Every locally compact group G admits a unique largest locally elliptic closed normal
subgroup, called the locally elliptic radical of G, and denoted Rady g(G). The quotient
G /Radpg(G) has trivial locally elliptic radical. For G discrete, we write Radpr instead
of RadLE.

1.4. On compact normal subgroups. We denote by W (G) the subgroup of a lo-
cally compact group G generated by compact normal subgroups of G. The properties
“W(G) is compact” and “G has a maximal compact normal subgroup” are equiva-
lent. Note also that when a maximal compact normal subgroup exists, it is necessarily
unique. It may happen that W (G) is closed but non-compact, and it may also happen
that W(G) is not closed.

Proposition 1.3. If G has a compact normal subgroup K such that G/K is a Lie
group with finitely many connected components, then W(G) is compact.

Proof. See [Hoc65 Theorem 3.1, XV] for the Lie group case. The given property
being invariant under extension with compact kernel, the statement follows. O

The topological FC-center of G, denoted B(G), is the set of elements of G with
a relatively compact conjugacy class. Clearly W(G) < B(G). The following is a
consequence of [WY72, Theorem 4].

Proposition 1.4. If G is tdic group such that W(Q) is closed, then W (G) is open
in B(G), and B(G)/W(Q) is a discrete torsion-free abelian group.

Lemma 1.5. Let G be a tdlc group and N a discrete normal subgroup of G. Then
for every finitely generated subgroup A of N, Cq(A) is an open subgroup of G.

Proof. Each element g € N has a discrete conjugacy class, and hence an open cen-
tralizer. Hence if A = (g1,...,gn) then Cg(A) =), Cc(g:) is open. O

Proposition 1.6. Let G be a o-compact tdlc group such that W(G) is closed. Let A
be a finitely generated subgroup of B(G). Then A normalizes a compact open subgroup

of G.

Proof. Since G is o-compact and W (G) is closed, there exists K compact normal in G
such that K is open in W(G) [Corl5]. Since A normalizes a compact open subgroup
of G if and only if the image of A in G/K normalizes a compact open subgroup
of G/K, it is therefore enough to prove the statement when W(G) is discrete. In
that case B(G) is also discrete by Proposition Since A is finitely generated, the
statement follows from Lemma [T.5l O



The following follows from [Wan71l, Theorem 5.5].

Proposition 1.7. Let G be a locally compact group, and H a cocompact subgroup
of G. Then every compact normal subgroup of H is contained in a compact normal
subgroup of G.

1.5. On commensurators. A virtual isomorphism of a group A is an isomorphism
between finite index subgroups of A. Two virtual isomorphisms are ~ if they coincide
on some finite index subgroup of A. Virtual isomorphisms modulo ~ form a group,
called the abstract commensurator of A, and denoted Comm/(A).

Let now I' be a group, and A a subgroup of I'. The (relative) commensurator
of A in T is the set of v € I' such that A and yAy~! are commensurable. It is
a subgroup of I, denoted Commp(A). The subgroup A is called commensurated
in I' if Commp(A) = I'. For v € Commr(A), conjugation by 7 induces a virtual
isomorphism A N~~'Ay — yAy~' N A of I'. This defines a group homomorphism
cr,a - Commp(A) — Comm(A).

If now G is a locally compact group, Comm(G) is defined similarly, except that we
consider topological isomorphisms between finite index open subgroups of GG, modulo
coincidence on some finite index open subgroup.

2. NILPOTENT SUBGROUPS WITH COBOUNDED NORMALIZERS IN TDLC GROUPS

The setting of this section is that of an ambient tdlc group G having a cocompact
(or more generally cobounded) subgroup I' such that I' admits a normal finitely
generated nilpotent subgroup A. The main results of this section are Theorems [2.8
.15 and 2.200

Before moving further, we mention that Bader—Furman—Sauer showed that, under
certain group theoretic requirements on a group I', the envelopes G of I" in which the
connected component of the identity G is not compact, enjoy very strong restrictions.
See [BES20, Theorem A]. This result reduces, for those groups I', the general study
of envelopes of I' to the study of tdlc envelopes. We also note that among those afore-
mentioned group theoretic requirements on I' for [BFS20, Theorem A] to hold, there
is the fact that I' does not admit any infinite amenable commensurated subgroup.
Hence the setting of the present section, where the ambient group G is tdlc and the
subgroup I' does admit an infinite normal amenable (indeed nilpotent) subgroup, is
disjoint from (and hence complementary to) the setting of [BFS20, Theorem A].

We also mention that the class of groups I' containing a commensurated nilpotent
subgroup naturally appears in [Mar24], where Margolis showed that given a finitely
generated group I' with a commensurated (e.g. normal) finitely generated nilpotent
subgroup A, one can always construct a cocompact envelope G of I' such that the
connected component of the identity G is the real Malcev completion of (a torsion-
free finite index subgroup of) the group A [Mar24, Theorem 5.2, Remark 3.8].

2.1. Preliminaries about tidy subgroups. We will make use of Willis’ theory
of tidy subgroups in tdle groups, through Theorem [2.2] and Theorem [2.4] For the
reader’s convenience we give a brief account of the objects under consideration.

An automorphism « of a locally compact group G is called a compaction if there
exists a neighbourhood of the identity €2 in G such that for every compact subset K
of G, there is ng > 1 such that a™(K) C Q for every n > ng. When this holds, there
is a unique maximal compact subgroup L of G such that a(L) = L, called the limit
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group of the compaction. The subgroup L consists of the set of elements of G whose
two-sided a-orbit is relatively compact. See [CCMT15, Lemma 6.3].
If a is an automorphism of a tdlc group G, the contraction group of « is

con(a) ={x € G : a"(r) - 1whenn — oo} .

The subgroup con(a) need not be closed, and we are led to consider C, = con(a),
which is a closed a-invariant subgroup of G. So « induces an automorphism of the
tdlc group C,, and « acts on C,, as a compaction [CCMT15l Proposition 6.17]. The
associated limit group is denoted K, (called the nub of a in Willis’ papers).

If U is a compact open subgroup of G, let U_ = (,,~; " "(U), Uy =,,>1 «"(U).
The subgroups U_ and U, are compact, U_ is the largest subgroup of U such that
a(U-) < U_; Uy is the largest subgroup of U such that Uy < «(Uy). The subgroup
Up = U_ NU; is then the largest subgroup of U such that a(Uy) = Uy. We define
U__=Up,>a™U-) and Us4 = ,;>; " (Us). Clearly con(a) < U__.

Definition 2.1. A compact open subgroup U of G is called tidy for « if it satisfies:

(1) U__ is closed;
(2) U=U_Uy.

Tidy subgroups always exist [Wil94, Theorem 1]. When holds, the automor-
phism « acts on U__ as a compaction, and U__ contains C,, as a cocompact subgroup
[BWO04, Corollary 3.17]. So the compact open subgroups U that verify are the
ones for which the associated subgroup U__ “encapsulates well” the compacting part
Cq- The limit group of the compaction U__ is equal to Uy. This means that the
elements of U__ that have a two-sided a-orbit that is relatively compact must lie in
the compact a-invariant subgroup Up. Under the additional condition ({2|), more is
true: an element x € U has a two-sided a-orbit that is relatively compact only if x
lies in Uy [Wil94, Lemma 9].

The scale of « is the minimum value of the index (a(U) : UNa(U)) when U ranges
over compact open subgroups of G. The compact open subgroups that realize this
minimum value are exactly the tidy subgroups of o [Wil01]. There is a compact open
subgroup U such that «(U) = U if and only if o and a~! have scale one. When this
holds, the tidy subgroups are the U such that a(U) = U.

In the sequel we use these notions for elements of G, viewed as inner automor-
phisms. The following theorem is due to Shalom-Willis [SW13| Theorems 4.9-4.13].

Theorem 2.2. Let G be a tdlc group. The following hold:

(1) If A is a finitely generated nilpotent subgroup of G, then there exists a compact
open subgroup U of G such that U is tidy for every element of A.

(2) If P a polycyclic subgroup of G, then there ezist a finite index subgroup S of
P and a compact open subgroup U of G such that U is tidy for every element
of S.

We will notably use the first item of Theorem [2.2] through the following corollary:

Corollary 2.3. Let G be a tdlc group, and A = (ay,...,ay) be a nilpotent subgroup
of G such each a; normalizes a compact open subgroup U; of G. Then there exists a
compact open subgroup U of G that is normalized by A.

Proof. Since A is finitely generated nilpotent, according to Theorem 2.2 one can find
a compact open subgroup U that is tidy for every element of A. In particular U is
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tidy for ay,...,a,. Since a; normalizes a compact open subgroup, that U is tidy for
a; means a; normalizes U. Therefore so does A = (ay,...,ay). [l

The following theorem is due to Willis [Wil04, Theorem 4.15].

Theorem 2.4. Let G be a tdlc group, and let H be a subgroup of G such that there
exists a compact open subgroup U of G such that U is tidy for every element of H.
Then [H, H] normalizes U.

2.2. The proof of of Theorem We recall the following result from the litera-
ture.

Theorem 2.5. Suppose that G is a compactly generated tdlc group containing a
closed cocompact subgroup H such that H is nilpotent. Then W (G) is compact and
G/W(Q) is discrete virtually nilpotent.

Proof. Since H is nilpotent, H has polynomial growth [Gui73, Theorem II.4]. Since
H is cocompact in G, G also has polynomial growth [Gui73, Theorem 1.4]. So by
the locally compact generalization of Gromov’s theorem [Los87], G is compact-by-
(discrete virtually nilpotent). The discrete quotient has a maximal finite normal
subgroup, and its pre-image in G is W(G). O

Recall that any two compact open subgroups of a tdlc group G are commensurable.
In particular every compact open subgroup of G is commensurated in G.

Lemma 2.6. Let G be a tdlc group, and T' a cobounded subgroup of G. Let A be
a subgroup of G that is commensurated by I'. Suppose that A normalizes a compact
open subgroup U of G, and let O :== UA. Then I' < Commg(O) and Comme(O) is
a finite index subgroup of G.

Proof. For v € T, we have that Yy 'U~v N U is normalized by v 1Ay N A. Hence
(v IUyNU)(y Ay N A) is a subgroup of O, which has finite index in O because
v Uy N U and v 'Ay N A have finite index in U and A because U and A are
commensurated by I'. So I' < Commg(0). Since O < Commg(O), the subgroup
Commg (O) is also open. So Commg(O) is a finite index subgroup of G. O

Proposition 2.7. Let G be a tdlc group, and T' a cobounded subgroup of G. Let A
be a subgroup of G that is normalized by I', and suppose that for each positive integer
n, A has only finitely many subgroups of index n. If A normalizes a compact open
subgroup of G, then there exists an open finite index subgroup G' of G containing A
and T, and a closed normal subgroup M of G' such that A < M and A is cobounded
in M.

Proof. Let U be a compact open subgroup of G normalized by A. Let O := UA and
G’ := Commg(0O). By Lemma we have I' < G’ and G’ is a finite index subgroup
of G. Let g1,...9n € G' such that G’ = JUgI". Let

n
O = ﬂ gi_lOg,- and A" :=O0'n A.
i=1
Since g; € G’ for every i, O’ is a finite index open subgroup of O, and hence A’
is a finite index subgroup of A. Moreover one has g;A'g;” 1 C O for all i. By the
assumption finite index subgroups of A, one can find a characteristic subgroup B of
A such that B < A’. The subgroup B keeps the property that g; Bg; L'C O for all 4,
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and B is in addition I'-invariant. The decomposition G’ = |JUg;T" then shows that
gBg~! C O for all g in G'. The subgroup N := ﬂgeG/gOg_l is therefore a closed
normal subgroup of G’ such that B < N. Since B has finite index in A, the image of
A in G'/N is a discrete finite subgroup F. Moreover F' has a cocompact normalizer
in G'/N. Proposition implies F' is contained in a compact normal subgroup K
of G'/N. The pre-image M of K in G’ is a normal subgroup of G’ in which A is
contained and cobounded. 0

The following will be a key tool later in the paper.

Theorem 2.8. Let G be a tdlc group, and I a cobounded subgroup of G. If A is a
finitely generated nilpotent normal subgroup of ', then A normalizes a compact open
subgroup of G.

Proof. Suppose for a moment that we have proved the statement under the assump-
tion that G is compactly generated. Let GG be an arbitrary tdlc group, and I',; A as
in the statement. Let O be a compactly generated open subgroup of G containing A.
Then I' N O is a cobounded subgroup of O, which surely normalizes A. Since O is
compactly generated, by the assumption A normalizes a compact open subgroup of
O. Since O is open in G, the statement follows.

Hence it is enough to prove the statement assuming that G is compactly generated.
(We can also assume that A torsion-free). We argue by contradiction. If the statement
is not true, choose a counter-example (G,T", A) with A of minimal Hirsch number.

We first claim that no non-trivial element of A normalizes a compact open subgroup
of G. Indeed, suppose that ag is a non-trivial element of A that normalizes a compact
open subgroup of G. Let B be the subgroup of A generated by all the I'-conjugates
of ag. Then B is a finitely generated nilpotent group, and B is normalized by I". The
subgroup B is finitely generated nilpotent, and generated by elements that normalize
a compact open subgroup. By Corollary this implies that the entire subgroup B
normalizes a compact open subgroup of G. By Proposition [2.7] there is a finite index
subgroup G’ of G and a closed normal subgroup M of G’ such that B is contained in M
and B is cobounded in M. The quotient @ = G’/M remains compactly generated.
The subgroup A/A N M has Hirsch number strictly smaller than the one of A, so
by minimality A/A N M normalizes a compact open subgroup V of Q. Let O be
the preimage of V in G. The subgroup O is normalized by A. The subgroup B is
cobounded in O because B is cobounded in M and M is cocompact in O. So O
is a tdlc group with a closed cocompact compactly generated nilpotent subgroup.
By Theorem this implies that O is compact-by-discrete with a unique maximal
compact open normal subgroup U. In particular U is characteristic in O. Since A
normalizes O, we deduce that A also normalizes U. Contradiction.

Now we claim that the image of I' in Aut(A) cannot be a torsion group. Indeed,
suppose for a contradiction that this is the case. Since A is finitely generated and
nilpotent, the group Aut(A) is linear over Z, i.e. is a subgroup of GL(n,Z) for some
n. Since every torsion subgroup of GL(n,Z) is finite, it follows that I' virtually
centralizes A. Since I' is cobounded in G, this implies that A is contained in B(G).
According to Proposition [I.6] A normalizes a compact open subgroup, which is not
true since we assume A is a counterexample. So we have reached a contradiction. Here
we can indeed apply Proposition [I.6] because the assumption that G is compactly
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generated implies that G is o-compact and that W (G) is closed by (see the references
to Trofimov and Méller in [Corl5]).

Hence there is an element « in ' such that v acts on A as an element of infinite
order. Let P be the subgroup generated by A and «. The subgroup P is polycyclic,
and by definition of v we have that P is not virtually abelian. According to Theorem
2.2] P admits a finite index subgroup S such that there exists a compact open sub-
group U of G that is tidy for every element of S. Theorem [2.4] applied to S and U
therefore implies that [S, S] normalizes U. Since [5,S] < A and [S, S| is non-trivial
as P is not virtually abelian, we have reached a contradiction with the beginning of
the proof. O

Remark 2.9. When A is not finitely generated, Theorem is no longer true.
For instance, the wreath product I' = Z/nZ Z embeds as a discrete and cocompact
subgroup in the isometry group G of the the Diestel-Leader graph DLs(n) (see Section
5). The subgroup A = @ Z/nZ is an abelian normal subgroup of T', and A does not
normalize any compact open subgroup of G.

2.3. The proof of Theorem (1} Let A be a finitely generated torsion-free nilpotent
group. The only automorphism of A which coincides with the identity on a finite index
subgroup of A is the trivial automorphism. Hence the homomorphism Aut(A4) —
Comm(A) is injective. In the sequel we often identify Aut(A) with its image in
Comm(A).

Notation 2.10. For k > 1, we denote by kA the subgroup of A generated by k-
powers.

The subgroup kA is a characteristic subgroup of A, which is of finite index in A
[LR04, 2.3.2].

Lemma 2.11. Let A be a finitely generated torsion-free nilpotent group. Let A’ a
finite index subgroup of A, and letk > 1. If f : kA — A’ is an isomorphism such that
the image of f in Comm(A) belongs to Aut(A), then f extends to an automorphism
of A, and A’ = kA.

Proof. By the assumption there exist a € Aut(A) and a finite index subgroup A” of
A such that A” < kA and f and « coincide on A”. Take a € kA, and take n > 1
such that a™ € A”. Then f(a)” = f(a") = a(a™) = a(a)”. Now in a torsion-free
nilpotent group, two elements with the same n-power are necessarily equal [LR04,
2.1.2]. So f(a) = a(a), and « is an automorphism of A that extends f. In particular
A = a(kA) = kKA. O

Recall from §I.5] that if A is a commensurated subgroup of a group I', we denote
by cr 4 : I' = Comm(A) the associated homomorphism.

Proposition 2.12. Let I' be a finitely generated group with a commensurated sub-
group A such that A is finitely generated, torsion-free and nilpotent. Suppose that the
image of cr o : I' = Comm(A) lies in Aut(A). Then there is a finite index subgroup
of A that is normal in T.

Proof. Let S = {v1,...,7} be a generating subset of I'. The subgroups {A N yflAyi}

form a finite collection of finite index subgroups of A. Hence one can find k£ > 1 such
that kA < AN~y L A~; for every i. Applying Lemma to the restriction to kA of
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the conjugation by ~;, we infer that kA is normalized by ~y; for every i. Hence kA is
normal in T'. O

Lemma 2.13. Let O be a locally compact group such that W(O) is closed. Then
the homomorphism O — O/W(O) induces a homomorphism v : Comm(O) —
Comm(O/W(0)).

Proof. Since W(O) is closed, O/W(O) is a locally compact group. Let K denote
the collection of compact normal subgroups of O, so that W (O) is the union of all
members of IC. If Oy is a finite index open subgroup of O, then we have

W(O) NOp = UKﬂOl = W(Ol),
K

where the last equality follows from Proposition [I.7}

If f: 01 — O is an isomorphism between two open finite index subgroups of O,
then f sends W (0O1) = W(O) N O; to W(O2) = W(O) N Oz, and hence induces an
isomorphism f : O /W (0)NO; — Oz /W (0O)NOs. Since O; is open in O, O; /W (O)N
O; is isomorphic to a finite index open subgroup of O/W(O). If f is the identity on a
finite index open subgroup of O then f is the identity on a finite index open subgroup
of O/W(0), so that f + f defines a map ¢ : Comm(0O) — Comm(O/W(O)).
Moreover composition behaves as expected, so that 1) is a homomorphism. O

Proposition 2.14. Let I’ be a group with a commensurated subgroup A such that A
has no non-trivial finite normal subgroup. Let G be a tdlc cocompact envelope of T’
such that A normalizes a compact open subgroup U of G, and let O = UA. Then the
following hold:
(1) G’ := Commg(O) is a finite index subgroup of G, and T' < G';
(2) W(O)=U and O/U ~ A;
(3) If ¥ : Comm(O) — Comm(O/U) is the homomorphism from Lemma
and if ¢ = ocg o G — Comm(O/U), then the restriction of ¢ to T is
equal to cr 4 : I' — Comm(A) (after identifying O/U with A);
(4) ¢ has open kernel, and the image of ¢ contains the image of cr a as a finite
index subgroup.

Proof. Lemma asserts G = Commg(O) is a finite index subgroup of G, and
I' < G'. Without loss of generality in the remaining of the proof we can assume
Commg(0) = G.

Since A is discrete in G and U is compact, UN A is finite. Moreover U N A is normal
in A. So by the assumption on A, we have UNA=1,0 ~U x A, and U = W(O).
Let ¢ : Comm(O) — Comm(O/U) be the natural homomorphism (Lemma [2.13),
and let ¢ : G — Comm(O/U) be the composition of cgo : G — Comm(O) and
¢ : Comm(O) — Comm(O/U). We check that ¢ verifies the required properties.
For v € T, as observed in the proof of Lemma [2.6] conjugation by + induces an
isomorphism between the open subgroups O; = (v 'UyNU)(y " 1AyN A) and Oy =
(UNyUy Y (AN~yy7LA) of O. Hence by construction we have ¢(7v) = ¥(cg.o(7)) =
cr,a(7y). Hence ¢ indeed extends cp 4. Moreover, since U is normal in O, conjugation
by U induces the trivial map at the level of O/U. So ¢(U) = ¢(cq,0(U)) = 1, and
the kernel of ¢ is therefore open. In particular the subgroup ker(¢)I" has finite index
in G, which means that the image of ¢ contains the image of cr 4 as a finite index
subgroup. O
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The following is Theorem [1| from the introduction.

Theorem 2.15. Let I' be a finitely generated group with a normal subgroup A < T’
such that A is finitely generated and nilpotent. Suppose that I' and A share a tdlc
cocompact envelope. Then there is a finite index subgroup A’ of A such that A’ admits
a normal subgroup B <A A" such that A and B are virtually isomorphic.

Proof. Upon changing A by a finite index subgroup of A, we can assume A is torsion-
free. Let G be a tdlc group that contains both I' and A as discrete cocompact
subgroups. By Theorem applied to (G, T'), there exists a compact open subgroup
U of G such A normalizes U. Let O = UA ~ U x A. By Lemma Commg(0)
is a finite index subgroup of G. Hence upon replacing G by Commg(O) and A by
AN Comme(0), we can assume O is commensurated in G.

The subgroup ANO is discrete and cocompact in O, and ANO is finite-by-nilpotent.
Hence AN O is virtually nilpotent, and we can find a torsion-free subgroup B < ANO
such that B has finite index in A N O. In particular B intersects U trivially since B
is discrete in G, and hence B is isomorphic to a finite index subgroup of A.

Since O is commensurated in G, A N O (and hence B) is commensurated in A.
We apply Proposition on the one hand to (G,T", A), and on the other hand to
(G,A,B). Let O' := UB ~ U x B, which is a finite index open subgroup of O. We
have the following diagram

G =22, Comm(0) —— Comm(O/U) —— Comm(A)

T w i
G —— Comm(0') —— Comm(O’/U) —— Comm(B)

The middle arrows in horizontal lines are the homomorphisms given by Lemma
and the right arrows are the isomorphisms induced by reduction modulo U. The left
and middle vertical arrows are the isomorphisms induced by the fact that O’ (resp.
O’/U) has finite index in O (resp. O/U). The right vertical arrow makes the right
square (entirely made of isomorphisms) commute.

Proposition |T_17[| says that the restriction to I' of the first line is equal to cr 4 :
I' - Comm(A), and the image of G in Comm(A) contains the image of cr 4 as a
finite index subgroup. And similarly for A in the second line. Now since A is normal
in I', the image of cr 4 lies in Aut(A). Hence G virtually maps to Aut(A) in the first
line. Since reduction modulo U identifies B with a finite index subgroup of A, and
since a finite index subgroup of A has a finite Aut(A)-orbit, we infer that n~!(Aut(B))
contains Aut(B) as a finite index subgroup. Hence G virtually maps to Aut(B) in the
second line. By restricting to A we infer that the image of cj p is virtually contained
in Aut(B). By Proposition applied to A, this implies that there is a finite index
subgroup A’ of A such that A’ normalizes a finite index subgroup B’ of B. O

Remark 2.16. Let A = Z? x Z/4Z, where the Z/4Z-action is via the rotation of
angle 7/2. Let also ' = Z% and A = Z x {0} <T. Then here T is even a finite index
subgroup of A, and A does not have any normal subgroup virtually isomorphic to Z.
Hence already for virtually isomorphic groups I', A it is necessary to pass to a finite
index subgroup of A in the conclusion of Theorem [2.15

Remark 2.17. As explained in the introduction, the assumption of Theorem [2.15|is
equivalent to asking that there is a connected locally finite graph on which I' and A



16 ADRIEN LE BOUDEC

act faithfully and geometrically. Since the conclusion of the theorem (i.e. the property
of having a finitely generated normal subgroup of a given virtual isomorphism class),
is stable under modding out, and forming an extension by, a finite normal subgroup,
it follows that the statement still holds if one requires that there is a connected
locally finite graph on which I" and A act geometrically (dropping the faithfulness
assumption).

2.4. Other rigidity results. Here we connect the setting of Theorem with
other results from the literature. Mosher—Sageev-Whyte’s Theorem 2 in [MSWO03]
shows that if a group I' acts cocompactly on an infinitely ended locally finite tree
such that vertex stabilizers (which are commensurated subgroups of I') are finitely
generated and nilpotent, and if A is a group QI to I', then A acts cocompactly on
an infinitely ended locally finite tree with vertex stabilizers QI to those of I'. That
result has been generalized by Margolis [Mar21]. The setting of [Mar21, Theorem 1.4]
covers the situation of a group I' having a finitely generated nilpotent subgroup A that
is commensurated in I', and provides sufficient conditions under which every group
A that is QI to I' admits a finitely generated nilpotent subgroup B such that B is
commensurated in A and B is QI to A. So [MSW03, Theorem 2] and [Mar21, Theorem
1.4] both consider commensurated subgroups, while Theorem deals with normal
subgroups (both in the assumption and in the conclusion). These two results hold in
the more general setting of QI groups I', A, as opposed to the stronger assumption
in Theorem that I, A share a cocompact tdlc envelope. [Mar21, Theorem 1.4]
requires on the one hand T" to be of type F,, for a certain n > 2 (depending on A),
and on the other hand that the coset space I'/A has infinitely many ends (the case
where I'/A is a tree corresponding to [MSWO03|, Theorem 2]). Theorem has no
such assumption.

2.5. Almost self-centralizing nilpotent normal subgroups.

Definition 2.18. We say that a subgroup A of a group I is self-centralizing in I' if
Cr(A) is contained in A, and almost self-centralizing in I' if Cr(A) has a finite index
subgroup contained in A.

So self-centralizing means Z(A) = Cr(A), and almost self-centralizing means Z(A)
has finite index in Cp(A).

Lemma 2.19. If A is normal in ' and A is almost self-centralizing in T, then every
finite index subgroup A’ of A is almost self-centralizing in T'.

Proof. Since A is normal, Cp(A’) acts by conjugation on A, and hence acts on the
quotient A/A’. Since A/A’ is finite, Cp(A’) has a finite index subgroup that acts
trivially on A/A’, so Cr(A) is of finite index in Cp(A’). We deduce Z(A) is of finite
index in Cp(A’). Since Z(A) is virtually contained in Z(A’), Z(A’) is of finite index
in CF(A/) ]

Theorem 2.20. Let I' be a group admitting a normal subgroup A 1T such that A is
finitely generated and nilpotent, and A is almost self-centralizing in T'. If G is a tdlc
cocompact envelope of I'; then G is compact-by-discrete.

Proof. By Lemma [2.19] upon changing A into a finite index subgroup we can assume
A is torsion-free. According to Theorem there exists a compact open subgroup
U of G such A normalizes U. We can therefore apply Proposition [2.7, which provides
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a finite index subgroup G’ of G containing I', and a closed normal subgroup M of G’
such that A < M and A is cocompact in M. If the conclusion holds for G’ then it
also holds for G, so we can assume G’ = G. By Theorem [2.5 we infer that W (M) is a
compact open subgroup of M. Since W (M) is characteristic in M and M is normal in
G, W (M) is normal in G. Since the conclusion is invariant under modding out G by
a compact normal subgroup, and since ANW (M) is trivial since A is torsion-free, we
can assume W (M) is trivial. It then follows that M is discrete and finitely generated.
By Lemma |1.5|we deduce that N := Cg(M) is an open normal subgroup of G. Hence
' N N is a discrete and cocompact subgroup of N. We have ' N N < Cp(A N M).
Since AN M has finite index in A, Cr(A) has finite index in Cr(ANM). SoI'N N is
virtually contained in Cr(A), and hence in Z(A) by the assumption that A is almost
self-centralizing in I'. Hence I' N N is virtually abelian. By Theorem [2.5] again we
deduce that W(N) is compact and open in N. Since N is open in G it follows that
W(N) is a compact open normal subgroup of G. O

Corollary 2.21. Suppose I is a group of the form I' = 7" x A, where n > 2 and A
is any subgroup of GL(n,Z). Then every tdlc cocompact envelope of T is compact-by-
discrete.

Proof. By definition A = Z" is self-centralizing in I', so I' falls under the scope of
Theorem [2.20) g

3. PoLycycCLIC GROUPS

Theorem 3.1. If G is a tdlc cocompact envelope of a polycyclic group T', then G is
compact-by-discrete.

Proof. Let A denote the Fitting subgroup of I'. Then A is finitely generated nilpotent,
and A is self-centralizing in I' [LR04, 1.2.10]. The statement hence follows from
Theorem [2.20) g

Remark 3.2. It is a general fact that if a group I' has an upper bound on the
cardinality of its finite subgroups, then every tdlc envelope of I' is cocompact (see
e.g. [BFS20, Lemma 3.9]). Since polycyclic groups are virtually torsion-free, they do
satisfy this property. Hence Theorem [3.1] accounts for all tdlc envelopes of T'.

Remark 3.3. It could also be possible to prove Theorem with the approach
taken in Section [} However the above proof relying on the results of Section [2] is
more self-contained.

The following is a reformulation of [Kro90, 3.1], also proven in [BCGM19, Propo-
sition 5.8].

Proposition 3.4. Let G be a tdlc group, and assume that G admits a dense polycyclic
subgroup. Then G is compact-by-discrete.

Theorem 3.5. If G is a tdlc group containing a cobounded polycyclic subgroup, then
G is compact-by-discrete.

Proof. Let I be a cobounded polycyclic subgroup of G, and let H = I". By Proposition
H admits a compact normal subgroup K such that H/K is discrete. Since H
is cocompact in G, by Proposition [I.7] the compact subgroup K is contained in a
compact subgroup K’ such that K’ is normal in G. The image of I' in G/K' is
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therefore discrete and cocompact. By Theorem we deduce G/K' is compact-by-
discrete. Therefore G as well. U

3.1. Stability under commability. Two locally compact (e.g. discrete) groups
G, H are commable if there exist locally compact groups Gy,...,G, with Gog = G
and G,, = H and homomorphisms Gy — G1 <+ Go — --- — G,,_1 + G, where each
G; = Gi+1 and G;+1 < G419 represents a continuous homomorphism with compact
kernel and closed cocompact image [Corl5]. This can also be phrased in terms of geo-
metric actions. Two o-compact groups G, H that are capable of acting continuously
and geometrically on the same proper metric space are commable, and for o-compact
groups commability is the equivalence relation generated by this property. The equiv-
alence between these points of view is explained in details in [CH16), 4.C-5.B]. When
G, H are compactly generated, the (locally compact version of the) Milnor-Schwarz
lemma asserts that commable implies QI.

The study of all cocompact envelopes of a group I' contributes to the more general
problem of the study of the locally compact groups commable to I, as it consists in
the first step I' — G in the above sequence (up to the fact that we also allow to
quotient out by a finite normal subgroup).

Theorem 3.6. Consider the class of locally compact groups G such that, after mod-
ding out by a compact normal subgroup, we have:

(1) G is unimodular and amenable;
(2) the identity component GO is open in G, and G/G° is virtually polycyclic.
Then this class is stable under commability.

A tdlc group belongs to the class described in the theorem if and only if it is
compact-by-(discrete virtually polycyclic). Hence Theorem generalizes Theorem
A discrete group belongs to that class if and only if it is virtually polycyclic.
Hence we have:

Corollary 3.7. Let I' be a virtually polycyclic group, and let A be a discrete group
that is commable to I'. Then A is virtually polycyclic.

Recall that a connected Lie group G is amenable if and only if G has a closed
normal cocompact solvable subgroup. Recall also that if H is a closed subgroup of
a connected amenable Lie group G, then H/H? is virtually polycyclic (in particular
discrete subgroups of G are virtually polycyclic).

Proof of Theorem[3.6, Let C; denote the class of locally compact groups that satisfy
properties and of Theorem Let Co be the class of groups G such that G
admits a compact normal subgroup K such that G/K is in C;. We have to show Cy
is stable under commability. Clearly Cs is stable under forming an extension by a
compact normal subgroup and modding out by a compact normal subgroup. So what
we have to prove is that if H is a closed cocompact subgroup of G and one of H or
G is in Co, then so is the other.

Suppose first G € C3. We want to show H € Cs. After modding out by a compact
subgroup we are reduced to show that if G € Cy, then H € C;. Also by Theorem [1.2]
we can assume G is a connected Lie group. Since propertyis a Ql-invariant among
compactly generated locally compact groups [Tes08, Corollary 11.13], H satisﬁes
Now let L := HNGY. Since GV is open in G and H is closed in G, the subgroup L is
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open in H. Since L is a closed subgroup of a connected Lie group, L° is open in L.
Since HY = LY, H? is open in H. We shall see that H/H?Y is virtually polycyclic. Since
G/GY is virtually polycyclic and this property is stable by extension, it is enough to
see that (H N G°)/H? is virtually polycyclic. But H N GY is a closed subgroup of an
amenable connected Lie group, and hence the quotient by its connected component
of the identity (which is H?), is indeed a virtually polycyclic group.

Suppose now H € Co. Again by [Tes08, Corollary 11.13], G satisfies Let @
be the totally disconnected group @ = G//G°, and denote by I' the image of H in Q.
Since H? < G® and H verifies I" is virtually polycyclic. Since H is cocompact in
G, T'is cobounded in Q. So we can apply Theorem [3.5] from which we deduce that @ is
compact-by-discrete. Therefore G is (connected-by-compact)-by-discrete. According
to Theorem G is (compact-by-(virtually connected Lie)-by-discrete. The normal
compact-by-(virtually connected Lie) subgroup of G has a unique maximal compact
normal subgroup (Proposition , which is therefore normal in G. Hence after
modding out by this compact subgroup the group G is (connected Lie)-by-discrete.
The image of H in G//G° is virtually polycyclic and has finite index in G/G°. So
G/GY is indeed virtually polycyclic, i.e. G verifies O

3.2. Application: classification of all envelopes of certain polycyclic groups.
In this subsection we prove Theorem [§] from the introduction.

Let d > 1. We say that an element of GL(d,R) is generic if it has d distinct real
eigenvalues. Let A < GL(d,Z) be a free abelian group of rank &k > 1. Suppose
that every non-trivial element of A is generic and has positive eigenvalues. So A is
diagonalizable over R, and one can find commuting real matrices Xi,..., X such
that, if ¢ : R¥ — GL(d,R) is the the homomorphism defined by ¢(ty,...,tx) =
exp(t1 X1 + -+ -t Xg), then (p(Zk> = A.

We have the following basic lemma:

Lemma 3.8. If a continuous homomorphism v : R¥ — GL(d,R) coincides with ¢
on ZF, then ¢ = .

Proof. By restricting to each coordinate, it is enough to consider the case k = 1. That
case amounts to see that if A = exp(X) is generic, then X is uniquely determined by
A. Let (v1,...,v4) be a basis made of eigenvectors of A. Since A is diagonalizable,
sois X. If (wy,...,wy) is a basis made of eigenvectors of X, then each w; is also an
eigenvector of A. Since eigenspaces of A are lines, it follows that up to a permutation
we have (wy,...,wq) = (v1,...,v4). Hence X acts on v; by multiplication by In()\;),
and X is indeed uniquely determined. ([

In the sequel we denote N = Z? and I' = N x A, and we make the following
standing assumption:

(f) Every element of A is generic with eigenvalues positive and different from 1.

Proposition 3.9. Suppose (). Suppose G is a connected Lie group that is an enve-
lope of I'. Then, after modding out by a compact normal subgroup, G is isomorphic
to G

Proof. Upon modding out by the unique maximal compact normal subgroup, we
assume G has no non-trivial compact normal subgroup. Suppose for a moment that
the case where G is solvable has been treated. Let R be the largest normal closed
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connected solvable subgroup of G. We know that R is cocompact in G since G is
amenable. Since R is normal, L := RI is a closed cocompact subgroup of G. Since
both I' and R are solvable, L is solvable. Let L° be the identity component of L.
We have R < L%, and L° is a finite index subgroup of L. Since the statement is
invariant under changing I' by a finite index subgroup, we can assume L° contains
I'. Hence by the assumption we have that L° is isomorphic to Gy. In particular Lo
is simply connected. Since R is a closed connected cocompact subgroup, we deduce
R = L% So we are reduced to show: whenever a connected Lie group G contains
G, as a cocompact normal subgroup, we have G = G,. For, let o : G — GL(d,R)
the representation associated to the G-action on the normal subgroup R?. One can
write G = G, K with K compact maximal. Since R* contains generic elements, the
a(R¥)-action on the projective space P(R?) has exactly d fixed points. Since a(R¥) is
normal in a(R¥K), a(K) preserves this finite set of fixed points. Since K is connected
and compact, a(K) is trivial. So K centralizes R?, and Cg(R?) = KR?. Since R?
is normal in G, so is C(R?). In particular K is normal in G, and hence trivial. So
G =Gy.

We now assume G is solvable. Let Ng denote the largest normal closed connected
nilpotent subgroup. The quotient group G /N is abelian, and N¢ is simply connected
since G has no non-trivial compact normal subgroup. By a theorem of Mostow [Rag72,
Theorem 3.3], the intersection I' N N is a discrete and cocompact subgroup of Ng.
Since elements of A have no eigenvalues equal to 1, there can be no non-zero factor
of N ® Q on which the A-action is unipotent. Hence the derived subgroup [I',T]
has finite index in N. A fortiori I' N N has finite index in N. So Ng ~ R? and the
A-action by conjugation on N is the original action. We now want to see G is simply
connected. Let K be a maximal compact subgroup of G. The subgroup R = NgK
is normal in G because G/Ng is abelian, so the image of K in GL(d,R) is a compact
connected subgroup that is normalized by A. Since A contains a generic element, this
subgroup must be trivial. So K centralizes Ng. In particular K is normal in R, and
hence in G. So K = 1, G is simply connected, and G/Ng is isomorphic to R¥. By
Lemma the G/Ng-action on Ng must be isomorphic to the given one. Moreover
the sequence 1 — R% — G — R¥ necessarily splits (see e.g. [Pen1Ibl, Lemma 5.3.10)),
so G ~ G,. O

Remark 3.10. In the second part of the proof, where G is solvable, if we assume in
addition G is simply connected and the Zariski closure of the adjoint representation of
G has no non-trivial compact torus, then the result is a consequence of a much more
general result of Witte [Wit95, Theorem 7.2]. But verifying the above additional
assumptions seems to require essentially the same arguments than the ones above.

Theorem 3.11. Suppose (1). Suppose G is a locally compact group that is an envelope
of '= N x A~ 7Z%xZF. Then, up to compact normal subgroup and finite index
subgroup, G embeds as a closed cocompact subgroup in G, = R? X R*.

Proof. According to Theorem [3.6] and after modding out by compact normal, we
have that G is open in G. By Theorem we can assume G is a connected Lie
group. Also by Proposition we can assume G has no non-trivial compact normal
subgroup. In particular upon passing to a finite index subgroup we can assume
G = G°T. The subgroup A := I' N GV is discrete and cocompact in GY. If G° is
compact then it is trivial and G = I'. Assume G° is not compact. Then A is an
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infinite normal subgroup of I'.  We now distinguish two cases. Suppose first that
A C N. Then A is free abelian of rank r» > 1. By Bieberbach theorem one can write
G° = R x K with K compact, A virtually contained in R, and R is isomorphic to R”
and is identified with a A-invariant subspace of R%. For the same reason as in the proof
of Proposition we infer K must be trivial. We deduce G = RI' = (RN) x A. The
subgroup N centralizes a lattice of R, so IV and R commute. So RN is abelian. Since
RN has no compact normal subgroup, we deduce RN is connected, and RN = R.
So G ~ (R" x Z%~") x A, and G is indeed isomorphic to a closed cocompact subgroup
of G,. Suppose now A is not contained in N. Then by Lemma below, up to
passing to finite index subgroup, A ~ Z% x Z* with 1 < ¢ < k, where the semi-direct
product verifies the same properties as I'. Hence Proposition [3.9| applies to A, and
we deduce G ~ R? x R¢, where the action of R¢ is via the restriction of . As in the
previous case we have N < RY, and consequently G = R% x (R‘A). O

We have used:

Lemma 3.12. Suppose (1). Suppose that A is normal in T' = N x A, and A is not
contained in N. Then ANN ~ Z%, AN A ~ Z° for some £ > 1 and (ANN) x (AN A)
has finite index in A.

Proof. The largest normal nilpotent subgroup N of A is normal in I', and hence
contained in N. The quotient A/Ny is abelian, and is a normal subgroup of N/Ny x A.
Suppose V' = N/Nj ® Q has positive dimension. Then the A-action on V keeps the
property that non-trivial elements are generic with eigenvalues different from 1. This
forces an abelian normal subgroup of N/Nj x A to be contained in N/N,. Hence
A < N, a contradiction. So N/N, is finite, and upon changing I into the finite index
subgroup I = Nj x A and A into A NT”, we can assume Ny = N. We then have
A=Nx(ANA), and AN A is infinite, as desired. O

3.3. Tdlc envelopes of lattices in Lie groups. Let H be a connected Lie group,
and ' a lattice in H. Furman and Bader-Furman—Sauer showed that if H is semi-
simple and not isomorphic to PSLy(R), then every tdlc envelope of T' is compact-by-
discrete [Fur01, BFS20]. The requirement to exclude PSLa(R) is necessary, see the
discussion above Theorem C in [BES20]. At the opposite extreme, if H is amenable,
then the group I' is virtually polycyclic. In that case by Theorem it is again
the case that every tdlc envelope of I' is compact-by-discrete. The following result
establishes that the same conclusion still holds even if H is not assumed to be either
semi-simple or amenable.

If H is a connected Lie group, we denote by R(H) the largest amenable normal
subgroup of H. The quotient H/R(H) is a connected semi-simple Lie group.

Theorem 3.13. Let H be a connected Lie group such that H/R(H ) is not isomorphic
to PSLy(R). Let ' be a lattice in H. Then every tdlc envelope of T is compact-by-
discrete.

Proof. Let G be a tdlc envelope of I'. We shall first argue that G is a cocompact
envelope. As recalled earlier, it is enough to see that finite subgroups of I" have
bounded cardinality. The image of I' under the adjoint representation of H is virtually
torsion-free by Selberg’s lemma, so in particular its finite subgroups have bounded
cardinality. Finite subgroups of I' N Z(H) also have bounded cardinality. Since the
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property of having finite subgroups of bounded cardinality is stable under extensions,
I' indeed has this property.

Set P:=T'NR(H). By Auslander theorem, P is discrete and cocompact in R(H ),
and the image I'/P of I in the semi-simple group H/R(H) is a lattice in H/R(H)
[Rag72, Corollary 8.25-8.27]. The subgroup P is virtually polycyclic, and is normal
in I". Let A be the largest nilpotent normal subgroup of P. The subgroup A being
characteristic in P, A is normalized by I'. Since G is a cocompact envelope of I, we
are in position to apply Theorem [2.8f We deduce that A normalizes a compact open
subgroup of GG. By Proposition applied to (A,I',G), we obtain (up to passing to
finite index subgroup of G) a closed normal subgroup M of G such that A < M and A
is cobounded in M. Let A’ be the image of P in G/M. The subgroup A’ is virtually
abelian, and A’ is normalized by the image of I' in G/M, which is a cobounded
subgroup of in G/M. We can therefore apply Theorem in the ambient group
G/M. This provides a compact open subgroup U of G/M such that A’ normalizes U.
Let O be the pre-image in G of A’U. Then O is an open subgroup of G containing P
and such that P is cocompact in O. Theorem[3.I]then asserts P normalizes a compact
open subgroup of O (and hence of G). Proposition applied to (P,T',G) ensures
G (virtually) has a closed normal subgroup N such that P < N and P is cocompact
in N. This subgroup N is necessarily compact-by-discrete. Since P is cocompact in
N, the image of I in G/N is discrete and cocompact in G/N. So the group G/M
is a cocompact envelope of I'/P. Since I'/P is a lattice in the semi-simple group
H/R(H), and H/R(H) is not isomorphic to PSLa(R), by [Fur01l, BES20] the group
G/N is compact-by-discrete. So all together we have that N has a unique maximal
compact open normal subgroup, N is compactly generated, and G/N is compact-by-
discrete. By [BCGMI19, Lemma 4.8] this implies G is compact-by-discrete. O

4. SOLVABLE GROUPS OF FINITE RANK

The main goal of that section is to prove Theorem [2| from the introduction. It will
be convenient to work in the class of minimax groups.

For a prime p, the Priifer p-group is the quotient Z[1/p]/Z. A solvable group T is
minimax if it admits a series in which each factor is either cyclic of a Priifer p-group.
The number h(I") > 0 of infinite cyclic factors in a defining series of I" is the Hirsch
number of I'. If a group I is virtually minimax, we extend this by defining h(T") to
be the common Hirsch number of all minimax finite index subgroups of I'. For I'
virtually minimax, we denote by R(I") the finite residual of T', i.e. the intersection of
all finite index subgroups of IT'.

Proposition 4.1. The following hold:

(1) Every minimaz group is of finite rank. Conversely, every finitely generated
solvable group of finite rank is minimaz. Hence for finitely generated solvable
groups, minimaz and finite rank is the same ([LRO4L §5.1]).

(2) Let I' be a minimax group. Then:

(a) The Fitting subgroup Fit(T") of T is nilpotent, and the quotient T'/Fit(T")
is virtually abelian. If moreover I' is virtually torsion-free, I'/Fit(I") is
finitely generated (JLRO4, 5.2.3]).

(b) The group R(T') is a direct product of finitely many Prifer groups, R(I") <
Fit(T"), and R(T) < W(T) (ILR04, 1.4.1-5.2.1-5.3.2] ).
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(¢) The group T is virtually torsion free if and only if R(T') is trivial, if and
only if W(I') is finite (JLRO4 5.2.5]).
(d) h(I') =0 if and only if R(T') has finite index in I' (JLRO4, §1.4]).

4.1. Envelopes of solvable groups of finite rank. The goal of this subsection is
to prove the following result about the structure of cocompact envelopes of virtually
minimax groups:

Theorem 4.2. Let I' be a virtually minimax group, and G a cocompact envelope of
I'. Then the subgroup G° Radrg(G) is open in G.

For every locally compact group G, the intersection G N Radpg(G) is always
compact. Hence in the theorem if in addition G has no non-trivial compact normal
subgroup, then G° Radpg(G) is topologically isomorphic to GV x Radpg(G), and is
open in G.

Remark 4.3. In the theorem none of G° or Radpg(G) can be removed. For instance
the group I' = Z[1/p] 1, Z admits as a cocompact envelope the group G = (RxQy) %,
7, for which G® = R and Radpg(G) = Qp. More generally, every finitely generated
virtually torsion-free minimax group I' admits a cocompact envelope G in which none
of GY or Radrg(G) is compact, provided I is not virtually polycyclic [CT20, §8.1].

Proposition 4.4. Let G = |J; G; be a locally compact group written as a directed
union of open subgroups G;. Let R; = Radrg(G;), and suppose that G;/R; is virtually
minimazx of Hirsch number d;. If (d;) is bounded, then the following hold:

(1) (d;) is eventually constant equal to d = maxd;;
(2) R:=Radyig(G) is open in G, and R = J; Ri;
(3) G/R is minimaz and h(G/R) = d.

Proof. The key is to see that R; C R; whenever j > 4. Fix 4, j such that j > ¢. Let
7; be the quotient map from G; to G;/R;. The subgroup R; NG; is normal in G; and
locally elliptic, hence contained in R;. So we have a short exact sequence

1 %Ri/RjﬂGi — Gi/Rj NnNG; —>Gi/RZ’ — 1.

Observe that since Radpg(G;/R;) is trivial, Proposition [4.1]ensures G,/ R; is virtually
torsion-free. Hence G;/R;NG;, which is a subgroup of G;/Rj, is virtually torsion-free
as well. Hence R;/R; NG, is finite, and G;/R; N G; is virtually minimax of Hirsch
number d;. Since G;/R; N G; is a subgroup of G;/Rj, we deduce d; < dj. The
assumption that (d;) is bounded hence means that (d;) is eventually constant, and
without loss of generality we can assume d; = d for every i. We deduce in particular
Gi/R; N G; has finite index in Gj/R;. Since Gj/R; has trivial locally elliptic radical,
the same is true for every finite index subgroup. Hence R;/R; NG, is actually trivial,
and hence R; = R; N G;. In particular R’ := (J; R; is a subgroup of G. It is locally
elliptic, open and normal. Moreover the locally elliptic radical of G has the property
that Radpg(G) N G; < R;, so Radyg(G) < R'. Hence Radig(G) = R'. O

The proof of Theorem will involve property Hrpp. A locally compact group
G has property Hpp if every unitary representation m with non-zero first reduced
cohomology H'(G, ), has a sub-representation of positive finite dimension. We refer
the reader to Shalom’s original article [Sha04] for background. We will be using the
following result of Shalom:
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Theorem 4.5. Let G be a non-compact, compactly generated and amenable tdlc
group. If G has property Hrp, then G has a finite index open subgroup that surjects
onto Z.

Proof. This is Theorem 4.3.1 in [Sha04]. The result is stated there for discrete groups,
but the same arguments cover the above setting. Indeed, the first part of the proof
of [Sha04, Theorem 4.3.1] provides a continuous homomorphism p : G — C" x U(n)
with infinite image. Here since G is totally disconnected and C™ x U(n) has no small
subgroups, ker(p) is necessarily open. Hence the image of p is an infinite finitely
generated subgroup of C" x U(n), and the second part of the proof goes through. O

We will also rely on the following result of Cornulier—Tessera, which is [CT20,
Theorem 1.12].

Theorem 4.6. If I is a finitely generated minimax group, then I' has property Hpp.

Recall that a closed subgroup H of a locally compact group G has finite covolume
if there is a G-invariant probability measure on G/H.

Theorem 4.7. Let T' be a subgroup of a tdlc group G such that I' is cobounded in G
and T has finite covolume in G. If T is virtually minimaz, then Radpg(G) is open,
and G /Radpg(G) is virtually minimazx (with Hirsch number bounded above by the one

of T').

Proof. First, we notice that since I' is amenable and has finite covolume in G, G is
amenable [BAIHV08, Corollary G.3.8]. Second, we also notice that as soon as we have
proved that Radpg(G) is open, the remaining assertions follow because the discrete
group G/Radpg(G) admits a quotient of I' as a finite index subgroup, and hence is
indeed virtually minimax. The bound on the Hirsch number is also clear.

For, we argue by induction on h(T'). Suppose h(I') = 0. By items [2d| and [2b| of
Proposition the subgroup W(I') has finite index in I'. Since I' is cobounded,
Proposition implies W (T") is contained in W(G). Since W(G) < Radpg(G), we
infer that Radpg(G) is cocompact in G. But then G/Radyg(G) is both compact, and
shall have trivial locally elliptic radical. So Radpg(G) = G.

Assume now h(I') > 0 and the results holds for every group of Hirsch number
< h(I"). Write the group G = |J; G; as the directed union of its compactly generated
open subgroups. Set I'; = I' N G;. The subgroup T'; is cobounded in G;, and h(T;) <
h(T") for all i. Hence if we show that Radpr(G;) is open for every i, then Proposition
applies, and ensures that Radpg(G) is open. So we are reduced to show that
Radpg(L) is open for every compactly generated open subgroup L of G. Set I';, :=T'N
L, which is a cobounded subgroup of L. Since L is compactly generated, Proposition
1.1 asserts that there is a sufficiently large finitely generated subgroup Ay, of I'g, such
that Ay is cobounded in L. If L is compact then there is nothing to prove, so we
assume L non-compact. Since Ay, is finitely generated, Theorem {4.6|says that Ay, has
property Hpp. Since Hpp is inherited from a dense subgroup, we deduce that Aj,
also has Hpp. Also since L is amenable, and Ay, is cocompact in L, Ay is of finite
covolume in L. Now Hpp passes from a closed cocompact subgroup of finite covolume
to the ambient group [CT20), Proposition 4.13(1)]. Therefore L has property Hpp.
Since L is compactly generated, amenable and non-compact, Theorem [£.5] ensures
that L has a finite index subgroup L’ that surjects onto Z. Upon passing to a further
finite index subgroup we can assume that L’ is normal, and then upon replacing L
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by L' we can assume L' = L. So we have a subgroup N that is open and normal in
L such that L/N ~ Z. Hence I' N N is cobounded in N and h(I' N N) < h(T'). By
induction Radpg(N) is open in N. Since N is normal and the locally elliptic radical
is characteristic, we deduce Radpg(N) < Radpg(L) and hence Radyg(L) is open in
L. O

Proposition 4.8. Let G be a locally compact group such that G/GP is locally elliptic.
Then G°Radrg(G) is open in G.

Proof. See [CT11, Theorem A.5]. O

Proof of Theorem[{.2 Since I' is amenable, G is amenable. Hence so is the tdlc
quotient @ = G/GY. Applying Theorem to the image of I" in @, we deduce
Radpg(Q) is open in Q. Let O be the preimage in G of Radpg(Q). The subgroup O
is therefore open in G, and we have O° = G° and Radpg(O) = Radpg(G). Moreover O
verifies the assumption of Proposition so by this proposition we infer O°Radg(O)
is open in O. Since O is open in G and O’Radg(0) = G’Radyg(G) , the statement
follows. 0

Corollary 4.9. If G is a tdlc cocompact envelope of a virtually torsion-free minimazx
group I', then G is compact-by-discrete.

Proof. Since G is tdlc, Theorem says Radpg(G) is open in G. But then I' N
Radpg(G) is torsion and cocompact in Radpg(G). Since I' is virtually torsion-free,
I' N Radpg(G) must be finite. So Radpg(G) is compact (and open). O

Corollary 4.10. IfT" is a minimax group, and I and A share a cocompact envelope,
then A lies in a short exact sequence 1 — A — A — Q — 1 such that Q is virtually
minimaz, and A can be written as an increasing union A = J,, A, such that Ay is
polycyclic and A, is a finite index subgroup of An11 for all n > 0.

Proof. Let G be a common cocompact envelope of I' and A. By Theorem the
subgroup O = GY Radpg(G) is an open normal subgroup of G. Since I is cocompact
in G, the discrete quotient G/O is virtually minimax. Let A := ANO. Note that G is
amenable, and therefore so is O. One can write O as an increasing union O = J,, O,
where each O, is open in O, and O,,/G° is compact. Note that O,, necessarily has
finite index in Op41. By Theorem @ there is a compact normal subgroup K, of O,
such that K, N'A is trivial and O,,/K,, is a virtually connected Lie group. Therefore
for every n the subgroup A, := AN O, = AN O, is isomorphic to a discrete and
cocompact subgroup of the virtually connected amenable Lie group O/K,. This
implies that A,, is virtually polycyclic. Moreover A,, necessarily has finite index in
Aj,11, so the sequence (A,,) verifies the desired conclusion. O

4.2. The proof of Theorem Recall that the FC-center of a group A, denoted
FC(A), is the subgroup of A consisting of elements with a finite conjugacy class
(equivalently, elements centralizing a finite index subgroup).

Proposition 4.11. Suppose that a discrete group A = J,, Ay, is the increasing union
of subgroups A, such that:

o Ay is polycyclic;

e A, is a finite index subgroup of An41 for all n > 0;

e Radpr(A) is finite.
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Then A is virtually solvable of finite rank.

Proof. The quotient A/Radpr(A), verifies the same assumptions as A. Moreover
being virtually solvable of finite rank is stable under forming an extension by a finite
normal subgroup. Hence it is enough to prove the statement when Radpp(A) is
trivial. Since Ay has finite index in A, for all n, Ag is a commensurated subgroup
of A. Hence there is a homomorphism ca a, : A — Comm(Ag), whose kernel N
is the set of elements of A that centralize a finite index subgroup of Ag. We have
NNA, =FC(A,) forall n and N = JFC(A,). Note that FC(A,) = A,NFC(A,+1)
and FC(A,) has finite index in FC(A,41) for all n. Let L, = Radir(FC(A,)).
By Theorem 5.1 in [Neu51], the subgroup L, coincides with the torsion elements
of FC(A,), and FC(A,)/L, is torsion-free abelian. In particular we have L, <
Ly for all n. Therefore L := |J L, is a locally finite subgroup of A, which is also
normal in A. By assumption A has no non-trivial locally finite normal subgroup,
we deduce that L is trivial and hence L, is trivial for all n. So FC(A,,) is torsion-
free abelian. Moreover, being a subgroup of a virtually polycyclic group, FC(A,,) is
finitely generated. Since FC(A,) has finite index in FC(A,11), this shows that the
abelian group N = |JFC(A,,) is of finite rank.

Since Ay is polycyclic, the group Comm(Ay) is linear over Q [Stul5, Theorem 1.2].
Let @ be the image of ca o, : A — Comm(Ag). Since A has no non-abelian free
group, () also has this property. By the Tits’ alternative, @) is virtually solvable, and
since @ is linear over (Q, a finite index solvable subgroup of () is solvable of finite
rank. Combined with the previous paragraph, this shows that A is virtually solvable
of finite rank. 0

For a group A, the assertions “A has no normal subgroup that is infinite and locally
finite” and “Radpr(A) is finite” are equivalent. Hence the following is an equivalent
formulation of Theorem [2|

Theorem 4.12. Let I be a finitely generated solvable group of finite rank. Suppose
that T' and A share a cocompact envelope, and suppose that Radpr(A) is finite. Then
A is virtually solvable of finite rank.

Proof. Since I finitely generated, I' is minimax (Proposition [£.1)). By Corollary
there is a short exact sequence 1 — A — A — @ — 1 such that @ is virtually
minimax, and A = J,, A,, where Ag is polycyclic and A,, is a finite index subgroup
of Apy1 for all n > 0. The subgroup A being normal in A, we have Radpp(A) <
Radpp(A). Hence Radpp(A) is finite. Since A is the increasing union of the A,
Proposition ensures A is virtually solvable of finite rank. Since @ also has this
property and being virtually solvable of finite rank is stable under extension, the
proof is complete. 0

4.3. Solvable groups of finite rank of type F,. In this subsection we show that
when I' is a solvable group of finite rank of type Fl,, the assumption in Theorem
that the locally finite radical Radpr(A) of A is finite is not needed.

Let C denote the class of solvable groups of finite rank of type Fi.,. By a theorem of
P. Kropholler, any solvable group of type Fu, is in Coo [Kr093] (and Co also coincides
with the class of so-called constructible groups). This result has been generalized
by Kropholler-Martinez-Pérez—Nucinkis, who showed that any elementary amenable
group of type F is virtually in Coy [KMPNO9).
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Theorem 4.13. Let T' be a group in Co Suppose that T' and A share a cocompact
envelope. Then A is virtually in Co.

Proof. 1t is a consequence of Corollary that the group A is elementary amenable.
The group A is also of type F, since A is QI to I' and being of type F is a QI-
invariant. Hence by the aforementioned result from [KMPNO09], A is virtually in
Coo- O

5. FLEXIBILITY RESULTS

The goal of this section is to provide two distinct constructions that show that the
class of solvable groups of finite rank is not CE-rigid. These constructions are given
respectively in and and lead respectively to Theorem [3| and Theorem

5.1. Preliminaries on Diestel-Leader graphs. Let n > 2. We denote by T}, the
regular tree in which each vertex has degree n+1. Let £ be an end of T,,. We denote by
G(n) the stabilizer of € in the group Aut(7},) of automorphisms of T},. Since Aut(7},)
acts transitively on the set of ends of T;,, end stabilizers are all conjugate, and hence
the isomorphism class of G(n) does not depend on . We will denote by b: T,, — Z
a Busemann function associated to ¢ (the choice of b consists of a normalization;
different Busemann functions differ by an integer constant). The Busemann character
associated to ¢ is a continuous homomorphism 7 : G(n) — Z (independent of the
choice of b). The kernel of 7, denoted E(n), is the set of automorphisms g of T,, such
that b(gv) = b(v) for every v € T;,. Equivalently, this means that there is a geodesic
ray towards £ that is fixed pointwise by ¢g. The homomorphism 7 is surjective, and
we have G(n) = E(n) x Z. The group G(n) acts vertex transitively on T),.

Let d > 2, and nq,...,nq > 2. For each i < d, we fix and end &; of T),, and a
Busemann function b; : T;,, — Z associated to &;.

Definition 5.1. The Diestel-Leader graph DL(ny,...,ng) is
DL(n1,...,nq) ={(x1,...,2q) € T, X -+ x Ty, | b1(x1) + - + bg(zq) = 0}.

The incidence relation is defined by (z1,...,z4) ~ (2],...,2}) if and only if there are

i # j such that z, = x; for every r # i,j and x; ~ 2} and z; ~ 7.

The graph DL(n1,...,nq) does not depend on the &;’s or on the b;’s up to isomor-
phism.

Notation 5.2. When ny = ... = ng = n, for simplicity we write DLy(n) for
DL(n,...,n).

Definition 5.3. The horocyclic product of G(ny),...,G(ng) is
>y G(ni) = {(g1,- .-, 9a) € G(n1) x - x G(na) | m1(g1) + - - + malga) = 0}.

The group <, G(n;) acts faithfully on DL(n1,...,n4) by (g1, - - -, ga) (@1, ..., 24) =
(11, ...,9424), and this action is transitive on vertices and proper. Theorem 2.7 in
[BNWOS] asserts that ¢, G(n;) is precisely the group of isometries of DL(ny1, . . .,ng)
that do not permute non-trivially isometric factors. In particular Dqglzl G(n;) is a fi-
nite index subgroup of the group of all isometries of DL(n1,...,ng).
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5.2. Actions on Diestel-Leader graphs. The case k = 1 in the following proposi-
tion is proven by Cornulier—Fisher-Kashyap in [CFK12]. The proof for k£ > 2 follows
a similar scheme. It is interesting to note that our present setting involves two new

conditions, and below, which do not appear in the case k = 1.

Proposition 5.4. Let G be a locally compact group of the form G = H xZF, k > 1.
Suppose that there are generatorsty, ..., t, of the acting group ZF, and open subgroups
Ly, ..., Lyy1 of H, and integers ny,...,ngy1 > 2 such that:

(1) for everyi = 1,...,k, L; is contained in tiLiti_l as a subgroup of index n;,
and
U t7Lit;™ = H;
n>1
(2) for everyi=1,...,k, Lxy1 is contained in t;lLkHti as a subgroup of index

Ng+1, and
U "Lyt = H;
n>1
(3) t;Lit;* = Lj for every for everyi=1,....k and every j # i,k +1;
(4) 7' Lisaty = -+ = t; ' Ly te;
Then there is a continuous homomorphism G — Isom(DL(ni,...,ng4+1)), and the
associated action of G on DL(ny,...,nky1) is proper if and only if:

(5) ﬂfill Lj is compact;
and cocompact if and only if:
(6) for every £ =1,...,k+ 1, the double coset space (N, Lj)\H /Ly is finite.

Proof. Fix i = 1,...,k. Denote by A; the subgroup generated by the elements ()
where j # i. By assumption the subgroup A; normalizes L;. Set S; := L; x A;.
Since t; centralizes A;, we have tiSl-tfl = (tiLitfl) X A;. In view Of we have that S;
is contained in ¢;S;t;  as a subgroup of index n;, and (U, t7Sit; ™) (t;) = HxZF =
G. Hence G is the ascending HNN-extension over its subgroup S; associated to the
isomorphism between S; and t;5;t; 1 performed the conjugation by ¢;. This provides
a vertex transitive action of G' on the tree T}, the vertex set of T),, being identified
with the set of cosets G/S;. The end associated to the geodesic ray (t; "Siti)n>1
is the unique end of T),, fixed by G. We denote by p; : G — G(n;) the associated
homomorphism. We also denote by o; the vertex corresponding to the coset S;, and
by b; the Busemann function normalized so that b;(o;) = 0.

Now let us denote by B the subgroup generated by the elements (¢;¢5 Lo, tk_ltlzl).
By assumptionthe subgroup B normalizes Ly1. Set Sii1 := Liy1 x B. Similarly
as before we have t15k+1t1_1 = (tlLk+1t1_1) x B, and by|(2)|we have that Sy contains
t1Sp41t7 " as a subgroup of index nyq, and (U,,>q t]"Sk41t}) X (1) = H x ZF = G.
So we also have a decomposition of G’ as an ascending HNN-extension over its sub-
group Sky1, and hence an action of G on the tree Tp, , . Let prpy1 : G — G(ngy1)
the associated homomorphism. We denote by o011 the vertex corresponding to the
coset Ski1, and by biy1 the Busemann function associated to the G-fixed end such
that bk+1(0k+1) =0.

We consider the diagonal action of G on the product Ty, x -+ x Ty, X Ty, -
Every element of H acts on each tree as an elliptic element, and hence preserves
b;. Fori =1,...,k, t; leaves invariant b; for j # 4,k + 1, translates b; by 1 and
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translates biy41 by 1 in the opposite direction. So overall G preserves by + ...+ bg11.
Therefore the homomorphism p := p; X - - X pg X ppy1 : G — [[F! G(n;) takes values
in <t G(n;), and we have an action on G' on DL(ny,...,np41). The stabilizer of
the vertex o := (01,...,011) is the subgroup ﬂkH S; = ﬂkH L;. This subgroup is
open, so the action is continuous. And the action is proper if and only if N ]211 L;is

compact. We have > G(n;) = ([T E(n:))p(G), so the number of orbits for the
G-action on DL(n1,...,nky1) is the same as the number of orbits for the H-action
on [Ib;1(0). Up to an identification of H/R; with a subset of G/S;, we have
b;1(0) = H/R So we deduce that the G-action on DL(ni,...,ng41) has finitely

many orbits if and only if the H-action on Hf’j LH /R; has finitely many orbits, which
happens if and only if @ holds. O

In the case where K = [Fy((t)) is a field of Laurent series, the following proposition is
implicit in [BNWOS§|. Later we will use Proposition [5.5|in the case K = Q, (actually
we will also use it indirectly in the case K = F,((t)) by appealing to a result from
[BNWOS)).

Proposition 5.5. Let d > 2 and K be a non-Archimedean local field of residue field
of cardinality q. Let Diagl(K) be the group of diagonal (d x d)-matrices over K of
determinant of absolute value 1. Then the group G = K% x Diag}l(K) embeds as a
closed cocompact subgroup in Isom(DLg(q)).

Proof. Let R be the maximal compact subring of K. Let 7 € R such that || generates
the image of |-| : K* — R¢. The integer ¢ is the cardinality of R/mR. Let Diag;(R)
be the subgroup of Diagcll(K ) of elements with coefficients in R. It is a compact
open subgroup of Diagh(K). For i = 1,...,d — 1 we let ; € Diagh(K) be the
element with 7~! at position i, with 7 at position d, and 1 elsewhere. The subgroup
generated by ti,...,tq_1 is ~ Z%7! and one has Diagl(K) = Diag,(R) x Z4!
Therefore one has G = H x Z%! with H = K? x Diag,(R). We verify that the
conditions of Proposition hold (with k =d—1). Fori =1,...,d, we set L; =
(Kei+ ...+ Re; + ...+ Kegq) x Diagy(R). Fori=1,...,d —1 and n > 1, we have
trLit;" = (Ke1+...+7 "Rej+ ...+ Kegq) x Diagy(R) and t; "Lgt! = (Ke1+ ...+
Key_1 + 7 "Reg) x Diagy(R). So[(1)] and [(2)] hold with ny = -+ = ng = ¢.
and are clear by definition of ¢;. One has ﬂk“ L;j = R? x Diagy(R), which is
compact, so|(5)|holds. Finally for every ¢ =1, . d we have (¢ Lj)Le = H, so @
holds. And the action of G on DL4(q) is indeed faithful because the vertex stabilizer
RY x Diag,(R) contains no non-trivial normal subgroup of G. O

5.3. First construction. Let k be either R or Q,. We say that M € GL(2,k) is
k-bounded if the subgroup generated by M is relatively compact in GL(2, k). Recall
that for M € SL(2,R), M is R-bounded if and only if |tr(M)| < 2. For M € SL(2,Q,),
we have the following classical characterization. We include a proof for the reader’s
convenience.

Lemma 5.6. Let M € SL(2,Q,), and p a prime. The following are equivalent:

(1) M is Qp-bounded;
(2) M has either no eigenvalue in Qp, or two eigenvalues of absolute value 1.

(3) [tr(M)], <1
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then either M = +1, or M is conjugate to [[0,—1];[1,a]] € SL(2,Z,). So holds.
implies is clear. Finally if does not hold, i.e. if |a|, > 1, then Hensel’s
lemma implies that f has a root in Q, of absolute value < 1 (and consequently also
has another root of absolute value > 1). So implies g

Proof. Let a = tr(M). The characteristic polynomial is f = ¢ — at + 1. If holds

Recall that a lattice I' is a product G = G X - - - X G5, is irreducible if the projection
of I' to any proper sub-product is non-discrete. When r = 2 this means I' has a non-
discrete projection on each factor.

Theorem 5.7. Let M € SL(2,Q). Suppose M has infinite order and M is R-
bounded. Write tr(M) = m/n, with m,n € Z relatively prime and n > 2. Let A < Q?
be the Z|M, M ~']-submodule of Q? generated by Z2. Then the finitely generated group
I' = A x5 Z embeds as an irreducible cocompact lattice in Isom(R?) x Isom(DLa(n)).

Proof. Since M is R-bounded, |tr(M)| < 2. We note that since M has infinite order,
tr(M) ¢ {—1,0,1}, so we indeed have n > 2 if we choose n positive. Let 7 be the
set of prime divisors of n. By Lemma these are the primes for which M is not
Qp-bounded. Let K < SL(2,R) be the closure of the subgroup generated by M. Since
M is R-bounded, K is a compact subgroup of SL(2,R). Let G; = R? x K, and let

Gs = <Hp€7r QZ) X Z, where the action of Z on each factor is by the matrix M.

Lemma 5.8. The map i : I' — G1 X G2 defined by
(x,y, M") = (z,y, M") x ((z,y), ..., (z,y), M")
s an injective group homomorphism with discrete and cocompact image in G1 X Ga.

Proof. Set V' =[], QIQ). The image of A in Hpﬁ Qg is relatively compact (because
M € SL(2,Z,) for all but finitely many p and M is Q,-bounded for p ¢ 7). Hence
i(A) is discrete in R? x V. We shall check it is also cocompact. Let W be the closure
of the image of A in V. The subgroup W contains [[ ¢, ZIQ), and W is M-invariant.
Since M is not Q, bounded for p € 7, this easily implies W = V. Since A in addition
contains Z2, it follows that i(A) is indeed discrete cocompact in R? x V.

The subgroup G x V is open in G x Gg, and i(I') N (G1 x V) = i(A) N (R? x V).
Discreteness of i(I') in G1 x G follows. Since i(I')- (G1 x V) = G1 x G, it also follows
that i(I") is cocompact in G; x Ga. O

The subgroup K is conjugated to SO(2,R) in SL(2,R). So G; is conjugated to
R? x SO(2,R) = Isom™"(R?) in R? x SL(2,R). Hence Lemma implies that, in
order to complete the proof of the proposition, it is enough to see that the group
G2 embeds as a closed and cocompact subgroup in Isom(DLy(n)). For, we rely on
Proposition (the case k =1, from [CFK12]).

For each p € 7, the matrix M has two distinct eigenvalues in Q,,, denoted )\S{)) and
AP such that |)\Sf)]p < 1 and |)\(,p)|p > 1 (Lemma . We have |/\(,p)|p = |)\Sf) +
A) lp = [tr(M)] = p*»™ and \)\Sf) lp = p ™. Let e(f),e(p) € Q2 be eigenvectors of

M associated to )\S{)) and \?). Set Ly = Hpeﬂ((@pegf)—f—Zpe(_p)) and Lo = Hpeﬂ(ZpeSI_?)—i—
Qpe(_p)). These are open subgroup of V =[] ¢, QIQ). Moreover V = L1 4+ Lo because

QIQ) = Qpeg?) —i—Qpe(_p) for every p € m, and LoNL; = HpeW(ZpeSf) —I—Zpe(_p)) is compact.
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One has
M(Zpegf) + @pe(—p)) = )‘Sf)Zpe(f) + )‘(—p)Qpe(—p) = pvp(n)Zpegf) + Qpe(—p)7
which is a subgroup of Zpegf) + Qpe(_p) of index p’ (. Hence ML, is a subgroup of

Ly of index [[ e p*»(") = n. Similarly L; is a subgroup of ML, of index n. Moreover
if ¢ is the generator of Z in G acting on V' via M, then one has

Ut Lot = ("Lt = V.

n>1 n>1
Therefore conditions |[(1)H(2)H(5)H(6)| of Proposition are satisfied (the other two
conditions are void for k£ = 1). The statement follows. 0

Remark 5.9. The setting of Theorem shares some similarities with the one from
[LM21, Theorem 7.5]. The difference between the two is that in our situation the
second factor corresponds to a cocompact action on a Diestel-Leader graph, rather
than a regular tree. In particular here the groups are amenable, while the ones in
[LM21] are never amenable.

Theorem 5.10. For every n > 2, there is a finitely generated group of the form
I = Z[1/n)? X Z such that for every finite group F of cardinality n, the groups T and
A =72 x FUZ share the cocompact envelope Isom(R?) x Isom(DLa(n)).

Proof. Take M = [[0,—1],[1,1/n]], the companion matrix of t* —¢/n + 1. We have
M € SL(2,Q), M has infinite order, and M is R-bounded. One verifies that the
Z[M, M ~1]-submodule of Q? generated by Z? is Z[1/n]?, so Theorem implies that
G = Isom(R?) x Isom(DLz(n)) is a cocompact envelope of I'. On the other hand,
the group Isom(DLy(n)) is a cocompact envelope of the wreath product F'!7Z (see
[BNWO08, [CFK12] and historical references given there). Since the natural copy of Z?
in Isom(R?) is discrete and cocompact, the group G is also a cocompact envelope of
A=72x F 7. O

As recalled in the introduction, the wreath product F!Z is not virtually solvable
provided F' is not solvable [Dyu00]. Hence Theorem [3| from the introduction follows
from Theorem .10

Remark 5.11. For every d > 2, one can also obtain similarly irreducible cocompact
lattices in Isom(R?) x Isom(DLg(n)).

5.4. Second construction. We denote by P the set of prime numbers, and A the
ring of adeles of Q. Let G be a linear algebraic group defined over Q. We follow
the notation from [Bor63]. Given a subring R of a field extension of Q, we denote
by Gr the group of elements of G with coefficients in R and determinant invertible
in R. The groups Gr and Gg, are locally compact for the natural topologies, and
Gz, is a compact open subgroup of Gg,. We also denote Gy = [[,ep Gz, and
G%° = Gr x Gy, which are equipped with the product topology. The group Gy
is compact, and G¢° is locally compact. The group of adeles of GG, denoted Gy,
consists of elements (goo, (9p)per) € Gr X [[,cp G, such that g, € Gz, for all but
finitely many p. The group G, admits a locally compact group topology, for which
the inclusion homomorphism G%° — G is continuous and has open image.

We denote respectively by j, : Gg — G, and jo : Gg — Gr the natural homo-
morphisms. The homomorphism j : Gg — Gy defined by j(9) = (oo (9), (4p(9))p)
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is well-defined, and has discrete image. In the sequel when convenient we sometimes
identify Gigp with its image in G,.
The following is due to Ono and Borel:

Theorem 5.12 ([Ono’9, Bor63]). The double coset space GX\Gy/Gq is finite.
The following is the main result of this section.

Theorem 5.13. For every d > 2, there is an infinite set of primes S such that for
every finite subset m = {p1,...,pr} of S, there exists a group I of the form

L =27Z[1/x)¢%xz"

with r = (k4 1)(d — 1), such that T’ embeds as a cocompact irreducible lattice in the
group
G =R?% x (R*)41 x Isom(DLg(p1)) % - - - x Isom(DLg(py)).

Proof. For M € SL(d,Z), we consider the centralizer C'(M) of M in SL(d). It is
algebraic and defined over Q. In the sequel we use notations introduced above. For
a subring R of a field extension K/Q, C(M)r = {g € SL(d,R) |gM = Mg}.

The construction of groups I' as in the statement goes as follows. We start by
choosing a matrix M € SL(d, Z) such that:

(1) M has d distinct eigenvalues in R;
(2) C(M)z has a finite index subgroup isomorphic to Z4~1.

Since M has d distinct eigenvalues in R, M is diagonalizable over R and C(M)g ~
(R*)4=1. Since C(M)z embeds as a discrete subgroup of C(M)g via jeo, we see
that the assumption that C'(M)z has a finite index subgroup isomorphic to 741 is
equivalent to saying that j.(C(M)z) is a cocompact subgroup of C(M)r. Matrices
M e SL(d,Z) with (1)) and (2)) exist for every d > 2 [PR72, Theorems 1.14 and 2.7].

One has j(C(M)g)NC(M) = j(C(M)z). Since C(M)y = [[,ep C(M)z, is com-
pact, and since joo(C(M)z) is a cocompact subgroup of C(M)r by assumption, we
have that j(C(M)z) is a cocompact subgroup of C'(M)%°. Since the group C(M ) is
covered by right j(C(M)g)-translates of finitely many cosets C(M)Xg1,...,C(M)gs
by Theorem [5.12] we infer that

(%) the subgroup j(C(M)q) is cocompact in C'(M)4.

Let f € Z[t] be the minimal polynomial of M. Since the matrix M has d distinct
eigenvalues in R, the polynomial f has degree d. Let K/Q be a field extension.
Denoting T'(K) the split torus of diagonal matrices in SL(d, K), the conditions

(a) M is diagonalizable over K;

(b) Ca(K) is conjugate in SL(d, K) to T'(K);

(c) f splits over K;
are equivalent. The implications [(0)] = [(a)] = [(c)] are clear. Since char(Q) =0
and f has d distinct roots in R, f cannot have any multiple root in any field extension
of Q. Hence if holds, then necessarily f has d distinct roots in K, and hence
holds.

Let L be the subfield of R generated by the roots of f. Given a prime number p, we
denote by ¥, , the set of places of L lying above p. For each v € ¥y, ,, the completion
L, of L with respect to v is a finite extension of Q,. We are interested in the set
of primes p such that f splits over Q,. These primes are exactly the ones such that
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L, = Qp. Since L/Q is a Galois extension, the group Gal(L/Q) acts transitively on
Y1 p [Neu99, Ch. I Proposition 9.1], so that |X | = |Gal(L/Q)|/|Gal(L/Q),| where
Gal(L/Q), is the stabilizer of a fixed v € X, ,,. The group Gal(L/Q), is isomorphic
to Gal(L,/Q,) [Neu99, Ch. II Proposition 9.6], so |Gal(L/Q),| = [L, : Qp]. Hence
|Xrpl = [L:Q]/[Ly:Qp). If we denote S;, = {p : |Xr,| =[L:Q]}, we have in
particular L, = Q, if and only if p € Sr. By Cebotarev theorem, the set of primes
Sr, has density 1/[L : Q], and in particular Sy, is infinite [Neu99, Ch. VII Corollary
13.6).
Let m = {pi,...,pr} such that # C Sr, and let

I' = Z[1/7]* x C(M)zp1/n < Z[1/7)* x SL(d, Z[1/x]).
Denoting ), : Q4 — Qg and i : Q¢ — R? the canonical inclusions, we consider
the homomorphism
(k) @ :T = RYx C(M)g x [[ Qf x C(M)g,

pET

defined by

p(x,9) = (ico(), oo (9)): (ipy (%), Jp1 (9)), - -, (ipy (), iy, (9))-

Since C(M)r X [Iper C(M)q, X Il,¢r C(M)z, is an open subgroup in C(M)a, by

we have that j(C(M)z1/)) is discrete and cocompact in C(M)r X][,c. C(M)g, X
[p¢r C(M)gz,. The subgroup [],¢, C(M)z, being compact, we have that o(C(M)z[1 /x])
is a discrete and cocompact subgroup of C(M)gr X [[,e, C(M)q,. Since in addition
©(Z[1/m]%) is a discrete and cocompact subgroup of R% x Hp@r@ , it follows that
¢(T) is discrete and cocompact in R x C(M)g x [[,er Q4 x C(M)g,. And ¢(I') has
a non-discrete projection on each proper sub-product.

For each p € 7, the minimal polynomial f of M splits over Q, because m C Sy. As
recalled above, this means that C'(M)q, is conjugate in SL(d,Q,) to the subgroup
T(Qp) of diagonal matrices in SL(d, Q). This conjugation induces an isomorphism
Qg xC(M)g, — Qg xT(Qp). The group T'(Q)) is a closed and cocompact subgroup of
the group Diag}(Q,) of diagonal (d x d)-matrices over Q, of determinant of absolute
value 1. Therefore by Proposition there is a continuous, injective homomorphism
Qg x T(Qp) — Isom(DLg4(p)) with closed and cocompact image. Precomposing with
the isomorphism Qg xC(M)q, — @g X T'(Qp), taking the product over m, and taking
the product with the real part R? x C(M)g, which is isomorphic to R% x (R* )41, we
indeed obtain an embedding of T" as a discrete cocompact subgroup of R% x (R* )41 x
[[per Isom(DLg(p)). The group C(M )z, /x being embeddable as a discrete cocompact
subgroup in

Mg x [] C(M)g, ~ (R*)* ! x [](@ ~ (RX)41 x zFEA=1)
pE™ peET
with V' compact, the rank r of the torsion-free part of C(M)Z[1/7r] is equal to r =
d—1+k(d—1) = (k+1)(d—1). Passing from C(M)z[; /5 to its finite index torsion-free
part, we obtain a group of the form Z[1/7]% x Z" satisfying all the requirements of
Theorem [5.131 O

Remark 5.14. Cornulier—Tessera gave in [CT20, §8.1] a procedure that takes as
input a finitely generated virtually torsion-free solvable group of finite rank I', and
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produces a cocompact envelope G of I'. The group I is originally viewed as a subgroup
of GL(n,Q). The procedure starts by considering the nilpotent radical N of I', and
produces a cocompact envelope N of N (N is defined as the product of the Zariski
closure of the real projection and the closures of the p-adic projections). The envelope
of T' is then defined as G = NT. This G is always nilpotent-by-(discrete virtually
abelian) [CT20), Proposition 8.4].

The discrete and cocompact embedding ¢ in @ is different from the one from
[CT20]. The map ¢ can be divided in two independent parts: the first part consists
in embedding the abelian normal subgroup in a product of local fields. That part
is standard (and is also a special case of the above N from [CT20]). The second
part consists in embedding the acting abelian subgroup discretely and cocompactly
in a product, in a compatible way with respect to the embedding at the level of the
abelian normal subgroup. The fact that it is possible to do so is very specific to the
groups considered here. This is this second step that allows to obtain a global direct
product decomposition in the envelope in .

Example 5.15. We consider an explicit example with d = 3 and kK = 1. The
matrices M, Ma, M3, My and the claims below that are not seemingly obvious have
been obtained with the assistance of the computer. Consider the polynomial f(t) =
t3 — 5t 4+ 6t — 1. It has three roots aq, s, as in R, verifying 0 < a1 < 1 < as <
2 < az. Let M € SL(3,Z) be the companion matrix of f. Consider the polynomial
h(t) = —f(1 —t). It is the minimal polynomial of My := —M + I. It has constant
coefficient equal to —1. Hence My € SL(3,Z). Clearly My commutes with M, so
Ms € C(M)z. Moreover (M, M) is isomorphic to Z? (and hence (M, M>) has finite
index in C(M)z). Indeed, if it is not the case, there exist non-zero m,n such that
M"™ = M3". The equation of = (—a; + 1)™ then implies m,n have the same sign
since |a1|,| — a1 + 1| < 1, while af = (—az + 1)™ implies m,n have opposite sign
since |az| > 1 and | — ag + 1| < 1, a contradiction.

The smallest prime for which the polynomial f splits over Q, is p = 13 (the
next ones being 29 and 41). Consider the matrices M3 = 1/13(M? + 5M + 41)
and My = 1/13(2M? + 3M + 4I). These matrices have determinant 1, and hence
belong to C(M )z /13- Let (w1, ws, w3) be a basis of Q3,4 consisting of eigenvectors
of M. Consider the homomorphism ¢ : C(M)z[1/13 — 73 which associates to g €
C(M)Z[1/13] the vector go(g) = (vlg()\l(g)),013()\2(9)),1)13()\3@))), where v13 is the
13-adic valuation and A;(g) is the eigenvalue of g associated to w;. Since M, My €
SL(3,Z), the eigenvalues of M and Ms belong to Z. This means M, My belong to
the kernel of ¢. Moreover for a suitable ordering of (w1, ws,w3) we have p(Ms) =
(0,1,—1) and o(My) = (—1,-1,2). It follows that (Msz, M,) is isomorphic to Z?
and that (M, My, M3, M) is isomorphic to Z*, and is a finite index subgroup of
C(M)z(1 /13- The associated semi-direct product I' = Z[1/13]3 x Z* sits as a discrete
and cocompact subgroup in R? x (R*)? x Isom(DL3(13)).

Remark 5.16. The case d = 2 in Theorem [5.13] and Theorem [5.7 have in common
that one tdlc factor in the product decomposition of the envelope is the isometry
group of some DLy(n). However these two settings remain quite different. First
because Theorem [5.13] allows more than one tdlc factor, but also mainly because the
Lie group factors are different (the isometry group of R? in Theorem and the Lie
group Sol (up to index two) in Theorem .
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We now complete the proof of Theorem[d The group I' and the cocompact envelope
G = R? x (R*)4! x Isom(DLg(p)) will be provided by Theorem and the group
A will be taken to be a product of discrete and cocompact subgroups in each factor
of G.

Definition 5.17. Let d > 2 and ¢ a prime power such that ¢ > d — 1. Let
Ag(q) =Tyttt +1)7 o (t+d—2)7 ) xZ07 1,
where the generators of Z?~! act by multiplication by ¢, t +1,...,t +d — 2.

Here F, is the finite field with ¢ elements. When d = 2, As(q) is the wreath product
Z/qZ 1 Z. When d = 3, A3(q) = Fy[t,t71, (t + 1)~} x Z? is Baumslag’s metabelian
group [Bau72] (more precisely, As(q) is the positive characteristic analogue of the
group from [Bau72]).

We make use of the following two results of Bartholdi—Neuhauser—Woess:

(I) Ag(gq) embeds as a discrete cocompact subgroup in Isom(DLy(g)) [BNWOS|,
Theorem 3.6].

(IT) A discrete and cocompact subgroup of Isom(DLg(n)) has type Fy—1 and not
F,; [BNWO0S8, Theorem 4.4-Corollary 4.5].

More specifically, one can verify that the embedding in can be decomposed as
an embedding of A4(q) as a discrete and cocompact subgroup in the group F,((t))? x
Diag}(F,((%)), followed by an embedding as a closed and cocompact subgroup of the
latter in Isom(DL4(q)) (Proposition for K = Fy((t). In view of [T)| statement
(IT)| applies notably to Ay(q). The fact that Ag(g) has type Fy_1 and not Fy is also
consequence of a result of Bux [Bux04, Corollary 3.5].

Proof of Theorem [} We take d > 2. By Theorem (applied with & = 1) one
can find a prime p larger than d — 1, and a group I' of the form I' = Z[1/p]? x
7*(@=1) such that I embeds as a cocompact irreducible lattice in G = R? x (R*)%~1 x
Isom(DL4(p)) = G1 X Go. The group G admits a discrete and cocompact polycyclic
subgroup P (in the notation from the proof of Theorem one can take P ~
7% x C(M)z). By G9 admits Ag4(q) as a discrete cocompact subgroup (since
p > d—1). Hence G is a cocompact envelope for A = P x A4(q). By the group
A4(q) has type Fy_1. Since P is polycyclic, P also has type Fy_1. Therefore A as well.
Since being of type F;_1 is Ql-invariant [DK18, Theorem 9.56], I" has type Fy_1. The
group I is of finite rank and torsion-free, while A is neither of finite rank nor virtually
torsion-free, because A4(q) contains a subgroup isomorphic to an infinite dimensional
vector space over I, ]
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