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Abstract. Let G be a locally compact group. For every G-flow X, one can con-
sider the stabilizer map x 7→ Gx , from X to the space Sub(G) of closed subgroups
of G. This map is not continuous in general. We prove that if one passes from
X to the universal irreducible extension of X, the stabilizer map becomes contin-
uous. This result provides, in particular, a common generalization of a theorem
of Frolík (that the set of fixed points of a homeomorphism of an extremally dis-
connected compact space is open) and a theorem of Veech (that the action of a
locally compact group on its greatest ambit is free). It also allows to naturally
associate to every G-flow X a stabilizer G-flow SG(X) in the space Sub(G), which
generalizes the notion of stabilizer uniformly recurrent subgroup associated to a
minimal G-flow introduced by Glasner and Weiss.

1. Introduction

Let G be a topological group. Recall that a G-flow is a continuous action G y X
on a compact space X (all our compact spaces are Hausdorff). A G-flow is minimal
if every orbit is dense. A continuous, G-equivariant map π : Y → X between G-
flows is called a G-map. If π is surjective, we also say that Y is an extension of X,
or that X is a factor of Y.

A map π : Y → X between compact spaces is called irreducible if every non-
empty open U ⊆ Y contains the fiber π−1({x}) for some x ∈ X, or, equivalently,
if the image of any proper closed subset of Y is a proper subset of X. Irreducible
maps were studied by Gleason [G3], who proved that to every compact space X,
one can associate an extremally disconnected compact space X̂, the Stone space
of the Boolean algebra RO(X) of regular open subsets of X, with an irreducible
map X̂ → X which is universal with respect to irreducible maps Y → X. Recall
that a space is extremally disconnected if the closure of every open subset is clopen.

An extension π : Y → X between G-flows is called irreducible if π is irreducible
as a map between topological spaces. The extension π is called highly proximal
if one can compress any fiber of π to a point by applying elements of G; more
precisely, if for every x ∈ X there exists a net (gi) of elements of G such that gi ·
π−1({x}) converges to a singleton in the Vietoris topology on the closed subsets
of Y. These notions were studied by Auslander and Glasner in [AG] where it
was proved that they are equivalent if X and Y are minimal. However, they are
different if Y is not minimal (cf. Example 2.1) and in this paper, we will mostly
be interested in the notion of an irreducible extension. Irreducible extensions
are thought as being rather small extensions and they preserve many dynamical
properties such as minimality, proximality, strong proximality, and disjointness.
When the spaces Y and X are metrizable, an extension π : Y → X is irreducible
iff it is almost one-to-one (i.e., the set

{
y ∈ Y : π−1({π(y)}) = {y}

}
is dense in

Y). Almost one-to-one extensions are an important tool in topological dynamics
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(used, for example to construct symbolic representations of continuous systems),
and the notion of an irreducible extension is the appropriate generalization that
allows the existence of universal objects and the development of a general theory.

For every G-flow X, there exists a G-flow X̂G and an irreducible extension
πX : X̂G → X with the following universal property: for every irreducible exten-
sion π : Y → X, there exists a G-map p : X̂G → Y such that π ◦ p = πX . Moreover,
X̂G is unique up to isomorphism. It is called the universal irreducible extension of
X. For minimal flows, the existence and uniqueness of X̂G were established in
[AG] and the general case is due to Zucker [Z2]. In [Z2], following the termi-
nology of [AG] for minimal flows, this extension was called the universal highly
proximal extension; however, in view of the non-equivalence of high proximality
and irreducibility for extensions of non-minimal flows and the fact that an ir-
reducible extension is not necessarily proximal (for example, for actions of the
trivial group), we prefer to use different names for the two notions.

The universal irreducible extension can be viewed as a type of completion (cf.
Section 2), so we call a G-flow X Gleason complete if X̂G = X. Equivalently, X is
Gleason complete if X admits no non-trivial irreducible extensions. The corre-
spondence X 7→ X̂G is idempotent and its image is the class of Gleason complete
G-flows. Thus the class of G-flows is partitioned into equivalence classes, where
X and Y are equivalent if they admit a common irreducible extension; or equiva-
lently if X̂G and ŶG are isomorphic. Each class contains a unique representative
that is Gleason complete.

If X is minimal, being Gleason complete is equivalent to being maximally highly
proximal in the sense of [AG]. In [Z2], the term maximally highly proximal, or MHP
(cf. [Z2, Proposition 3.5]) is used even for non-minimal flows with the same
meaning as our Gleason complete.

For discrete groups, the construction of X̂G reduces to the one by Gleason, and
we have that X̂G = X̂ [G3, Th. 3.2]. In this setting, a G-flow X is Gleason complete
iff it is extremally disconnected. This depends only on the topology of X, and
not on G. This is no longer true for non-discrete groups. Examples of Gleason
complete flows that arise in the non-discrete setting are X = G/H, where H is a
closed, cocompact subgroup of G, and G acts on X by left translations. Gleason
complete flows of Polish groups were extensively studied by Zucker (under the
name of MHP flows) in [Z2], where many more interesting examples can be
found. More general topological groups were considered by Basso and Zucker in
[BZ].

The equivalence relation of having the same universal irreducible extension
and the notion of Gleason complete flow are useful to express certain rigidity
properties among G-flows. An instance of this is a theorem of Rubin that asserts
that any two G-flows that are faithful and micro-supported have a common irre-
ducible extension [R]. Combined with [CLB, Prop. 2.3], this implies that every
group G that admits a faithful micro-supported G-flow admits exactly one faith-
ful micro-supported G-flow that is Gleason complete. For certain non-discrete,
totally disconnected locally compact groups, this flow is the Stone space of the
centralizer lattice of G, a Boolean algebra constructed from the local structure of
the group [CRW, Th. II], [CLB]. See the references above for the definition of a
“micro-supported” action and more details.

The main result. In certain contexts, Gleason complete flows are better behaved
than general flows. The main result of this paper is an illustration of such a
situation. For the remainder of the introduction, we suppose that G is a locally
compact group, and we denote by Sub(G) the space of closed subgroups of G.
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Endowed with the Chabauty topology, the space Sub(G) is compact, and the
action of G on Sub(G) by conjugation is continuous. To every G-flow X, we
can associate the stabilizer map X → Sub(G), x 7→ Gx, which is G-equivariant.
The stabilizer map is always upper semi-continuous (see, e.g., [GW]), but fails
to be continuous in general. This lack of continuity is not just a technical issue,
but is an intrinsic property of the flow. For instance, it witnesses the difference
between free and topologically free actions (see below). We show that for Gleason
complete flows, this defect disappears.

Theorem 1.1. Let G be a locally compact group and let X be a Gleason complete G-flow.
Then the stabilizer map X → Sub(G), x 7→ Gx, is continuous.

If X is any G-flow, the theorem applies to the Gleason complete flow X̂G, and
shows that taking an irreducible extension of X is enough to resolve the continuity
issue of the stabilizer map on X.

As mentioned above, when G is a discrete group, X is Gleason complete if and
only if X is extremally disconnected. In that case, Theorem 1.1 is equivalent to
saying that the set of fixed points in X of every element g ∈ G is an open subset
of X. This is a theorem of Frolík [F].

Another special case of Theorem 1.1 is a well-known theorem of Veech that the
action of a locally compact group on its greatest ambit Sa(G) is free. One can
apply Theorem 1.1 because the greatest ambit is a Gleason complete flow and the
free left translation action G y G embeds into it densely (cf. Corollary 5.8). A
relativized version of Veech’s theorem was considered by Matte Bon and Tsankov
in [MBT], where it was proved that the stabilizer map for the flow Sa(G/H)
(the Samuel compactification of G/H), where H is a closed subgroup of G, is
continuous. This is again a special case of Theorem 1.1 because the flow Sa(G/H)
is also Gleason complete [Z2].

As Theorem 1.1 is a common generalization of Frolík’s and Veech’s theorem,
it is perhaps not surprising that its proof mixes ideas from the proofs of both.
We also rely on the topometric structure on Gleason complete flows introduced
by Zucker [Z2] (extending a construction of [BMT] for Sa(G)), which while being
rather simple for locally compact groups, is still useful for us.

Freeness vs topological freeness. Recall that G y X is free if Gx is trivial for
every x ∈ X, and G y X is called topologically free if for every compact K ⊆ G
with 1G /∈ K, the closed set {x ∈ X : x ∈ K · x} has empty interior. (When
G is second countable, topological freeness is equivalent to saying that there is
a dense set of points x ∈ X such that Gx is trivial.) The difference between
freeness and topological freeness is detected by the failure of continuity of the
stabilizer map: a topologically free action is free if and only if the stabilizer map
is continuous. Also, the property of being topologically free is preserved under
irreducible extensions in both directions. Hence the following is a consequence
of Theorem 1.1.

Corollary 1.2. Let G be a locally compact group, and let X be a G-flow. Then the
following are equivalent:

(i) X is topologically free;
(ii) X̂G is free.

In particular, a Gleason complete flow is topologically free if and only if it is free.

This has the following application. Recall that a G-flow is called strongly proxi-
mal if the closure of the G-orbit of every Borel probability measure on X contains
a Dirac measure. The flow X is called a boundary if X is minimal and strongly
proximal. Every group G admits a boundary ∂FG, unique up to isomorphism,
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such that every boundary is a factor of ∂FG [G2, §III]. It is called the Furstenberg
boundary of G. By [G1, Lemma 5.2] and [G2, Lemma 4.1], the flow ∂FG is Gleason
complete.

Corollary 1.3. For every locally compact group G, the stabilizer map is continuous on
∂FG. In particular the following are equivalent:

(i) G admits a topologically free boundary;
(ii) G acts freely on ∂FG.

Proof. The first assertion follows from the fact that ∂FG is Gleason complete and
Theorem 1.1. For the second assertion, if G admits a topologically free boundary
G y X, then the action of G y ∂FG is also topologically free since there is a
factor map ∂FG → X. Since ∂FG is Gleason complete, Corollary 1.2 implies that
G y ∂FG is free. The other direction is clear. �

When G is a discrete group, the equivalence in Corollary 1.3 was already
known as it follows from [F]. Whether this property holds true in a given group G
was recently shown to be equivalent to the simplicity of the reduced C∗-algebra
of G [KK]. It is not known if this equivalence holds more generally for locally
compact groups. See [CKM, Sec. 6] for a discussion of this problem (where the
points of ∂FG where the stabilizer map is continuous are also considered).

Stabilizer flows. Theorem 1.1 is interesting beyond the case of topologically free
actions. Recall that a uniformly recurrent subgroup (URS) of a locally compact
group G is a minimal closed, G-invariant subset of Sub(G) [GW]. Every minimal
G-flow X gives rise to a URS of G, called the stabilizer URS associated to X,
defined as the unique minimal closed G-invariant subset of the closure of the
image of the stabilizer map in Sub(G) (Glasner–Weiss [GW]). (Although [GW]
makes the standing assumption that G is second countable, this fact holds for
every locally compact group and every minimal G-flow, see Section 5 for details.)

Theorem 1.1 allows us to associate a stabilizer flow to any G-flow X, without a
minimality assumption: we consider the Gleason complete flow X̂G, and simply
take the image of X̂G in Sub(G) by the stabilizer map (cf. Definition 5.1). By
definition, the stabilizer flow is an invariant under taking irreducible extensions.
In Section 5, we prove some of its basic properties. We show, in particular, that
when X is minimal, the stabilizer flow and the stabilizer URS are equal.

Corollary 1.4. Let G be a locally compact group, and let X be a minimal G-flow. Then
the stabilizer URS of X is equal to {Gz : z ∈ X̂G}.

In the special case where X = X̂G = Sa(G/H) for some closed subgroup
H ≤ G belonging to an URS of G, Corollary 1.4 is equivalent to [MBT, Proposition
2.8], which was used there to prove that every URS of G can be realized as the
stabilizer URS of some minimal flow.
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2. The universal irreducible extension of a G-flow

In this section, we give a new construction of the universal irreducible ex-
tension of a G-flow G y X, where G is an arbitrary topological group. The
existence of such an extension was proved by Auslander and Glasner [AG] for
minimal flows using an abstract argument and a construction without a mini-
mality assumption, in terms of near-ultrafilters, was given by Zucker [Z1] for
Polish groups and Basso and Zucker [BZ] for arbitrary topological groups. Our
construction is in some sense dual to theirs: instead of constructing the points
of X̂G directly, we describe the lattice of continuous functions C(X̂G) and use an
appropriate duality theorem to recover the space.

Before describing the construction, we give an example which illustrates that
irreducible and highly proximal extensions are distinct notions, even when the
target flow is minimal.

Example 2.1. Consider the irrational rotation R : T → T given by R(x) = x + α.
We construct an extension by doubling the orbit of 0 as follows. Let X = Tt {an :
n ∈ Z} and define a metric d on X by setting the distance d(an, nα) = 2−|n| and
extending it to all of X by taking the shortest path metric, i.e., d(am, an) = |nα−
mα|+ 2−|n| + 2−|m| for m 6= n, and d(an, x) = |nα− x|+ 2−|n| for x ∈ T. Then
(X, d) is a compact metric space and the map R extends to a homeomorphism of
X by setting R(an) = an+1 for all n ∈ Z. The extension map X → T is given by the
identity on T and an 7→ nα. Then one easily checks that this extension is highly
proximal but of course it is not irreducible because the points an are isolated.

2.1. The non-archimedean case. A Boolean algebra is called complete if it admits
suprema (and infima) of arbitrary subsets. A Boolean algebra B is complete iff
its Stone space S(B) is extremally disconnected, i.e., for every open U ⊆ S(B), the
set U is also open. If {Ai}i∈I is a family of clopen sets in S(B), their supremum
in B is the clopen set

⋃
i Ai .

An open subset U of a topological space X is called regular if U = Int U . The
collection RO(X) of regular open subsets of X forms a complete Boolean algebra
with the meet operation ∧ given by the intersection, and complement given by
¬U = Int(X \U). If X is Baire, RO(X) can also be viewed as the quotient of the
Boolean algebra of Baire measurable subsets of X by the ideal of meager sets. See
[K, Section 8]. We denote by X̂ the Stone space of the algebra RO(X). If X is
compact, there is a natural surjective, continuous map `X : X̂ → X given by

{`X(p)} =
⋂

U∈p
U ,

where p is viewed as an ultrafilter on RO(X).
The construction X 7→ X̂ only depends on the topology of X, so if G is a group

acting on X by homeomorphisms, it also acts on X̂. If G is a discrete group
and G y X is a G-flow, then G y X̂ is also a G-flow and it is the universal
irreducible extension of G y X. In particular, if G is discrete, a G-flow X is
Gleason complete iff X is zero-dimensional and the Boolean algebra of clopen
subsets of X is complete. This follows from the results of Gleason [G3].

The problem when G has non-trivial topology is that the action G y X̂ is not
necessarily continuous even if the original action of G on X is. In the case where
G is non-archimedean, this is easy to fix. Recall that a topological group G is
called non-archimedean if it admits a basis at 1G consisting of open subgroups. For
locally compact groups, by a well known theorem of van Dantzig, being non-
archimedean is equivalent to being totally disconnected (or tdlc, for short).
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If B is a Boolean algebra on which G acts and V ≤ G, we will denote by BV
the subalgebra of B of elements fixed by V. Note that if B is complete, then BV
is complete, too.

If X is a G-flow, we let

RO(G, X) :=
⋃
{ROV(X) : V open subgroup of G}

and note that, as a direct limit of Boolean algebras, RO(G, X) is also a Boolean al-
gebra but that it is not necessarily complete. Note also that RO(G, X) is invariant
under the action of G and that the action G y RO(G, X) is continuous (where
RO(G, X) is taken to be discrete).

Lemma 2.2. Let G be a non-archimedean group and let G y X be a G-flow. Then the
elements of RO(G, X) form a basis for the topology of X.

Proof. By regularity of X, it suffices to see that for every x ∈ U ∈ RO(X) there
exists U′ ∈ RO(G, X) such that x ∈ U′ ⊆ U. By continuity of the action, there
exists an open subgroup V of G and an open subset U1 ⊆ U with x ∈ U1 such
that VU1 ⊆ U. Then U′ = Int VU1 works, because U′ is V-invariant and U′ ⊆
Int U = U, since U is regular. �

We denote by X∗G the Stone space of RO(G, X). The action of G on X∗G is
continuous. Note that X∗G, being the Stone space of a Boolean algebra, is zero-
dimensional.

Proposition 2.3. Let G be a non-archimedean group and let G y X be a G-flow. Then
G y X∗G is the universal irreducible extension of X.

Proof. We denote by π : X̂ → X∗G the dual map of the inclusion RO(G, X) ⊆
RO(X) and note that π is continuous and G-equivariant. By Lemma 2.2, if two
elements of X̂ have the same image by π, then they have the same image under
the map ` : X̂ → X. Hence there is a continuous G-equivariant map `G : X∗G → X
such that `G ◦ π = `. The map `G : X∗G → X is irreducible because ` is. If
Y → X is an irreducible extension of X, then Ŷ = X̂. Thus RO(X) = RO(Y) and
RO(G, X) = RO(G, Y). In particular, Y is a factor of X∗G = Y∗G. �

By continuity of the G-action on X, we have Clopen(X) ⊆ RO(G, X), where
Clopen(X) is the subalgebra of RO(X) consisting of clopen subsets of X. That
this inclusion is an equality actually characterizes Gleason complete flows for
non-archimedean groups.

Corollary 2.4. Let G be a non-archimedean group and let G y X be a G-flow. Then the
following are equivalent:

(i) X is Gleason complete;
(ii) RO(G, X) = Clopen(X).

Proof. (i)⇒ (ii) follows from Proposition 2.3. Note that (ii) implies that X is zero-
dimensional in view of Lemma 2.2, so the implication (ii)⇒ (i) also follows from
Proposition 2.3. �

2.2. The general case. When G is a general topological group, one cannot hope
to construct the universal irreducible extension as the Stone space of a Boolean
algebra: for example, if G is connected, then all of its minimal flows are connected
and have no non-trivial clopen sets. So for the general case, we employ Riesz
spaces instead of Boolean algebras.

Recall that a Riesz space is an ordered real vector space, which is a lattice for
the ordering, i.e., all pairs of elements a, b have a least upper bound a ∨ b and a
greatest lower bound a ∧ b. A Riesz space L is called archimedean if there exists a
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unit 1 ∈ L such that for every a ∈ L, there exists n ∈ N with a ≤ n1. A unit also
naturally defines the uniform norm:

‖a‖ := inf{r ∈ R : |a| ≤ r1},
where, as usual, |a| = a ∨ (−a).

A natural example of an archimedean Riesz space is the collection of real-
valued continuous functions C(X) on a compact space X with the usual lattice
operations and unit the constant function 1. Then the uniform norm coincides
with the sup norm. The Yosida representation theorem, which we recall below,
states that in fact every archimedean Riesz space complete in the uniform norm
is of this form.

For every archimedean Riesz space L with a unit 1 (and equipped with the
uniform norm), we can consider its spectrum:

S(L) = {x ∈ L∗ : x(a ∨ b) = x(a) ∨ x(b) for all a, b ∈ L and x(1) = 1}.
S(L) is a compact space if equipped with the weak∗ topology and we have a map
Γ : L→ C(S(L)) defined by

Γ(a)(x) = x(a).
Γ is clearly a contractive homomorphism and, in fact, it is an isometric isomor-
phism (see [dJvR, Section 13]).

Let G be a topological group, let E be a Banach space and let G y E be an
action by isometric isomorphisms. We will say that an element φ ∈ E is G-
continuous if the map G → E, g 7→ g · φ is norm-continuous.

Lemma 2.5. Let G be a topological group, let X be a compact space and let G y X be
an action by homeomorphisms. Then the following are equivalent:

(i) G y X is a G-flow (that is, the action is jointly continuous);
(ii) Every function φ ∈ C(X) is G-continuous for the induced action G y C(X).

Proof. (i)⇒ (ii). This is obvious.
(ii)⇒ (i). Let U ⊆ X be open and let x0 ∈ U. Our goal is to find an open

V 3 1G and an open W 3 x0 such that V ·W ⊆ U. Let W 3 x0 be open such
that W ⊆ U. By Urysohn’s lemma, there exists φ ∈ C(X) with φ|W = 1 and
φ|X\U = 0. As φ is G-continuous, there exists V 3 1G such that for every v ∈ V,
‖v−1 · φ− φ‖ < 1/2. This implies that V ·W ⊆ U. �

Next we will describe the universal irreducible extension of a G-flow G y X.
Let B(X) denote the Riesz space of bounded Borel functions on X with unit the
constant function 1 and let M be the ideal given by:

M =
{

φ ∈ B(X) : {x ∈ X : φ(x) 6= 0} is meager
}

.

The ideal M allows us to define the essential supremum seminorm on B(X) by

‖φ‖M = inf
{

r ∈ R : {x ∈ X : |φ(x)| > r} is meager
}

.

Denote B(X) := B(X)/M and note that ‖·‖M descends to a norm on B(X). Let
X̂ be the spectrum of B(X). It can naturally be identified with the Stone space
of the Boolean algebra RO(X) (see [dJvR, Section 14]). The space B(X) has also
been considered before in a dynamical context by Keynes and Robertson in [KR].

We let BG(X) denote the set of G-continuous elements of B(X). We note that
BG(X) is a closed subspace of B(X) which is also closed under the lattice oper-
ations, so we can define X̂G := S(BG(X)). Because C(X̂G) ∼= BG(X), it follows
from Lemma 2.5 that G y X̂G is a G-flow. There is a natural injective map
C(X) → B(X), whose image is, by virtue of Lemma 2.5, contained in BG(X).
Slightly abusing notation, we will identify C(X) with its image in BG(X). The
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inclusions C(X) ⊆ BG(X) ⊆ B(X) translate to factor maps X̂ → X̂G → X. We
have the following.

Proposition 2.6. Let G be a topological group and let G y X be a G-flow. Then the flow
G y X̂G is the universal irreducible extension of G y X. In particular, X is Gleason
complete if and only if the natural injection C(X)→ BG(X) is a bijection.

Proof. First, as X̂G is a factor of X̂, it is clear that the extension X̂G → X is
irreducible. If G y Y is an irreducible extension of G y X, then by the universal
property of X̂, there exists an embedding ι : C(Y)→ C(X̂) = B(X) (see above). It
follows from Lemma 2.5 that every φ ∈ C(Y) is G-continuous, so ι(φ) is also G-
continuous. Therefore ι(C(Y)) ⊆ BG(X) and this gives a factor map X̂G → Y. �

Corollary 2.7. Let G be a topological group and let L be an open subgroup of G. If
G y X is a G-flow, then X is Gleason complete as a G-flow if and only if it is Gleason
complete as an L-flow.

Proof. We have BG(X) = BL(X) since L is open, so the statement follows from
Proposition 2.6. �

It is proved in [AG] that for minimal flows X, the correspondence X 7→ X̂G
is functorial. Our description of X̂G suggests the correct formulation of this
result for general flows. Recall that a continuous map φ : X → Y is called
category-preserving if φ−1(A) is nowhere dense for any nowhere dense A ⊆ Y.
Every homomorphism between minimal flows is category-preserving. Indeed, if
φ : X → Y is a factor map between minimal flows and U ⊆ X is open, non-empty,
then finitely many translates of φ(U) cover Y, so φ(U) must be somewhere dense.
Also, every irreducible map between compact spaces is category-preserving.

Proposition 2.8. The correspondence X 7→ X̂G is a functor from the category of G-flows
with morphisms category-preserving G-maps to the category of Gleason complete flows.

Proof. Let φ : X → Y be a category-preserving homomorphism of G-flows. Then
φ−1(A) is meager for every meager set A ⊆ Y, so we obtain a dual homo-
morphism of Riesz spaces φ∗ : B(Y) → B(X) given by φ∗([ f ]) = [ f ◦ φ], where
f ∈ B(Y) and [ f ] denotes its equivalence class in B(Y). The image of BG(Y) is
contained in BG(X), so by the duality theorem, this gives us a map X̂G → ŶG. �

3. Characterizations of Gleason complete flows

Starting from this section, G will denote a locally compact group. A pseudo-
norm on G is a continuous function ‖·‖ : G → R+ satisfying:

• ‖1G‖ = 0;
• ‖g−1‖ = ‖g‖ for all g ∈ G;
• ‖gh‖ ≤ ‖g‖+ ‖h‖ for all g, h ∈ G.

We denote by Br the set of elements g ∈ G such that ‖g‖ < r, and we also let
B̄r be the set of elements g ∈ G such that ‖g‖ ≤ r. We say that ‖·‖ is proper if B̄r is
compact for all r. We say that a pseudo-norm ‖·‖ is a norm if it satisfies that the
only element g with ‖g‖ = 0 is 1G. A norm is called compatible if it induces the
topology of G. Note that any group G that admits a proper pseudo-norm must
be σ-compact (because G =

⋃
n∈N B̄n).

Every pseudo-norm induces a right-invariant pseudo-metric dr on G defined
by

(3.1) dr(g, h) = ‖gh−1‖.
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We will say that a pseudo-norm ‖·‖ is normal if for every g ∈ G, the conjuga-
tion by g is a uniformly continuous map of the pseudo-metric space (G, dr). In
particular, the kernel {g ∈ G : ‖g‖ = 0} of a normal pseudo-norm is a normal
subgroup of G.

Proposition 3.1. Let G be a σ-compact locally compact group, and let V be an open
neighborhood of 1G. Then there exists a proper, normal pseudo-norm on G and r > 0
such that Br ⊆ V.

Proof. Choose and open neighborhood W of 1G such that W2 ⊆ V. Since G is
σ-compact, theorems of Kakutani–Kodaira ([HR, Theorem 8.7]) and Struble [S]
ensure that there exists a compact normal subgroup K of G with K ⊆W such that
G/K admits a compatible and proper norm ‖·‖G/K. If we let ‖g‖ = ‖gK‖G/K,
then ‖·‖ is a pseudo-norm on G that is proper. Moreover since the image of W in
G/K is an open neighborhood of the identity in G/K and ‖·‖G/K is compatible,
there is r > 0 such that ‖gK‖G/K < r implies gK ∈ WK. Hence ‖g‖ < r implies
g ∈ V. Normality is clear since ‖·‖G/K induces the topology on G/K. �

Let ‖·‖ be some fixed proper pseudo-norm on G. If G y X is a G-flow, we can
define a pseudo-metric ∂ on X by

(3.2) ∂(x, y) = inf{‖g‖ : g ∈ G, g · x = y}.
If x and y are not in the same orbit, then ∂(x, y) = ∞.

Note that since ‖·‖ is proper, ∂ is always lower semi-continuous for the com-
pact topology τ on X. Recall that a real-valued function f is called lower semi-
continuous (lsc) if for every real number r the set { f > r} is open. It is upper
semi-continuous (usc) if { f < r} is open.

When G is metrizable, we can work throughout with a fixed compatible,
proper norm on G, and then ∂ is a metric on X that refines the topology τ, i.e.,
(X, τ, ∂) is a compact topometric space in the sense of [B]. In general, one can work
with a topouniform spaces as is done in [BZ], but we will not need this here. In the
case where G is Polish, locally compact, the topometric space above is the same as
the one considered by Zucker [Z2]. The metric ∂ also provides a convenient way
to express G-continuity: a function f : X → R is G-continuous iff it is uniformly
continuous as a function on the metric space (X, ∂).

The following characterization of Gleason complete flows is the main theo-
rem of this section. Note that because every locally compact group admits an
open, σ-compact subgroup (for example, the subgroup generated by any com-
pact neighborhood of the identity), the condition in the theorem is not restrictive.
If G is already σ-compact, one can simply take L = G below.

Theorem 3.2. Let G be a locally compact group and let L be a σ-compact, open subgroup
of G. If G y X is a G-flow, the following are equivalent:

(i) X is Gleason complete;
(ii) VU is open for every open neighborhood V of 1G and open subset U of X;

(iii) for every proper pseudo-norm on L (with the associated pseudo-metric ∂ for the
action L y X) and for every open subset U of X, the function X → R ∪ {∞},
x 7→ ∂(x, U), is continuous.

When G is a tdlc group, these are also equivalent to:
(iv) RO(G, X) = Clopen(X);
(v) X is zero-dimensional and for every compact open subgroup V of G, the Boolean

algebra ClopenV(X) is complete.

Before going further, we make a few comments. First note that it follows
in particular that statement (iii) holds for some L iff it holds for every L. The
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equivalence between (i) and (ii) is already contained in [Z2] (up to the observation
that when G is locally compact, Definition 3.1 from [Z2] can be restated as in
(ii)). Here we provide an alternative proof of that equivalence. The proof of (ii)
⇒ (i) follows arguments close to [G3], while the proof of the converse (which
goes through (iii)) uses the characterization of Gleason complete flows given in
Proposition 2.6.

We need some preliminaries.

Lemma 3.3. Let G be a locally compact, σ-compact group with a proper pseudo-norm
‖·‖. Let G y X be a G-flow and let ∂ be defined as above. Then the following hold:

(i) If F ⊆ X is closed, the function x 7→ ∂(x, F) is lsc.
(ii) If U ⊆ X is open, the function x 7→ ∂(x, U) is usc.

Proof. (i) Let A = {x : ∂(x, F) ≤ r}. Let x be a limit point of A and let (xi, εi)i be
a net in A× R+ converging to (x, 0). Let yi ∈ F be such that ∂(xi, yi) < r + εi.
By passing to a subnet, we may assume that yi → y ∈ F. Then taking limits and
using the fact that ∂ is lsc, we obtain that ∂(x, y) ≤ r.

(ii) Let r > 0, and let V be the open ball around 1G of radius r. Then

∂(x, U) < r ⇐⇒ V · x ∩U 6= ∅,

which is an open condition. �

Remark 3.4. In fact, Lemma 3.3 does not need G to be locally compact (with the
appropriate definition of ∂ in the general case, see [Z2]). The proof of (i) works
as above and (ii) is [Z2, Theorem 4.8] and it is harder.

Lemma 3.5. Let X be a G-flow. Then X satisfies condition (ii) of Theorem 3.2 if and
only if for every open neighborhood V 3 1G and open subset U ⊆ X, there exists an open
neighborhood V′ 3 1G with V′ ⊆ V such that V′U is open.

Proof. We only have to prove the implication from right to left. Suppose that the
property in the statement holds, and let U be an open subset of X and V an open
neighborhood of 1G. For every g in V one can find V′g an open neighborhood of
1G such that gV′g is contained in V and V′gU is open. Writing V =

⋃
g∈V V′g, we

then have VU =
⋃

g∈V V′gU, which is this thus open. �

Lemma 3.6. Let X be a G-flow that satisfies condition (ii) of Theorem 3.2. Then for all
open subsets U1, U2 ⊆ X, we have U1 ∩U2 6= ∅ if and only if VU1 ∩U2 6= ∅ for every
open neighborhood V 3 1G.

Proof. Suppose U1 ∩U2 6= ∅, and let V be an open neighborhood of 1G. Then
clearly VU1 ∩U2 6= ∅. Since VU1 is open, this implies that VU1 ∩U2 6= ∅. That
condition is equivalent to U1 ∩V−1U2 6= ∅ and hence implies that U1 ∩V−1U2 6=
∅. So VU1 ∩U2 6= ∅, as desired. The reverse implication is a general fact that
follows from continuity of the G-action. �

Recall that a subalgebra A of a Boolean algebra B is dense if for every non-
zero element in B there is a non-zero element in A that is smaller. We recall the
following (see [K1, Theorem 4.19]).

Lemma 3.7. Let A be a dense subalgebra of a Boolean algebra B. If A is complete, then
A = B.

Before starting the proof of Theorem 3.2, we also introduce some notation. If
π : Y → X is a continuous map between topological spaces and U ⊆ Y is open,
we denote by π∗(U) the fiber image of U:

π∗(U) := {x ∈ X : π−1(x) ⊆ U}.
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If the space Y is compact, the set π∗(U) is always open, and if π is irreducible,
π∗(U) is non-empty for any non-empty U.

Proof of Theorem 3.2. (ii) ⇒ (i). Let π : Y → X be an irreducible extension. We
shall prove that π is injective. Suppose for a contradiction that there exist distinct
points y1, y2 in Y with the same image x in X. Then one can find an open V 3 1G
and open subsets O1, O2 ⊆ Y such that y1 ∈ O1, y2 ∈ O2 and VO1 ∩O2 = ∅. The
irreducibility of π implies that π(O) ⊆ π∗(O) for any open O ⊆ Y. Indeed, if
not, there is y ∈ O and an open W 3 π(y) disjoint from π∗(O). By irreducibility,
π−1(W)∩O contains a fiber, whose image must be in π∗(O), contradiction. Thus
the sets π∗(O1) and π∗(O2) both contain x. Hence by the assumption (ii) and
Lemma 3.6, we have Vπ∗(O1) ∩ π∗(O2) 6= ∅. Since Vπ∗(O1) = π∗(VO1), we
deduce that VO1 and O2 intersect each other, which is a contradiction.

(iii)⇒ (ii). Let V be an open neighborhood of 1G, and U an open subset of X.
By Lemma 3.5, upon replacing V by V ∩ L we can assume that V is contained in
L. Applying Proposition 3.1, we can find a continuous proper pseudo-norm on L
and r > 0 such that Br is contained in V. If ∂ is the pseudo-metric on X associated
to this pseudo-norm, by assumption, the function f (x) := ∂(x, U) is continuous.
So BrU = { f < r} is open. Since Br ⊆ V and V was arbitrary, Lemma 3.5 ensures
that (ii) holds.

(i) ⇒ (iii). Fix a continuous proper pseudo-norm on L, and an open subset U
of X. Let φ0(x) = ∂(x, U) and φ1(x) = ∂(x, U). We have that φ0 is lsc and φ1
is usc by Lemma 3.3. Moreover, φ0 ≤ φ1, and both φ0 and φ1 are ∂-contractive
(meaning that |φi(x) − φi(y)| ≤ ∂(x, y) for all x, y). First we show that the set
{φ0 < φ1} is meager. Note that

{φ0 < φ1} =
⋃

q1<q2∈Q
{φ0 ≤ q1 < q2 ≤ φ1}

and each set in the union is closed. So if {φ0 < φ1} is non-meager, there exist
q1 < q2 such that {φ0 ≤ q1 < q2 ≤ φ1} has non-empty interior W. The set
{x : ∂(x, W) < q2} is open and intersects U , so it must intersect U. So there exist
x ∈ U, y ∈W with ∂(x, y) < q2, which contradicts the definition of W.

Now for r > 0, set φ0,r = min(φ0, r) and φ1,r = min(φ1, r). The functions
φ0,r, φ1,r are bounded and remain ∂-contractive (hence L-continuous). As X is
Gleason complete as a G-flow by assumption, it is also Gleason complete as a
L-flow by Corollary 2.7. So by Proposition 2.6, there exists a continuous function
θ on X such that φ0,r = φ1,r = θ on a comeager set. As the sets {θ < φ0,r} and
{θ > φ1,r} are open, they must be empty, and we must have that φ0,r ≤ θ ≤ φ1,r.
We claim that θ is ∂-contractive. If not, there exist x ∈ X and g ∈ L such that
|θ(x)− θ(g · x)| > ‖g‖. However, the set {x : |θ(x)− θ(g · x)| > ‖g‖} is open, so
as θ = φ0,r on a comeager set, there exists x such that |φ0,r(x)− φ0,r(g · x)| > ‖g‖,
contradiction. Note that θ−1(0) ⊇ U, so by continuity, θ−1(0) ⊇ U . As θ is
∂-contractive and θ = 0 on U , for every x ∈ X, we have

θ(x) ≤ inf
y∈U

∂(x, y) = ∂(x, U) = φ0(x).

Since θ ≤ r, this shows that θ ≤ φ0,r, and hence θ = φ0,r. So φ0,r is continuous.
Since r is arbitrary, it follows that φ0 is continuous.

We now assume G is a tdlc group. The equivalence between (i) and (iv) fol-
lows from Corollary 2.4. Recall in particular that these imply that X is zero-
dimensional. Hence the fact that (iv) implies (v) is clear since ROV(X) is always
complete. It remains to see that (v) implies (iv). To that end, let V be a compact
open subgroup of G. We want to see that ROV(X) = ClopenV(X). We claim
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that ClopenV(X) is a dense subalgebra of ROV(X). Indeed, if U is a non-empty
element of ROV(X), then we can find a non-empty clopen subset U1 inside U
since X is zero-dimensional. Since V is compact and open, the stabilizer of U1
has finite index in V, so that VU1 is a union of finitely many clopen subsets, and
hence is clopen. Moreover VU1 ⊆ U since U is V-invariant. Hence ClopenV(X)
is dense in ROV(G, X). Since we make the assumption that ClopenV(X) is com-
plete, Lemma 3.7 implies that ROV(X) = ClopenV(X), as desired. �

Compare the next corollary with [BMT, Lemma 2.4].

Corollary 3.8. Let G be a locally compact, σ-compact group equipped with a proper
pseudo-norm ‖·‖, and let G y X be a Gleason complete flow. Then for U1, U2 ⊆ X
open,

∂(U1 , U2) = ∂(U1, U2).

Proof. Suppose that ∂(U1 , U2) < r. Consider the set {x : ∂(x, U2) < r}. By
Theorem 3.2, it is open and it intersects U1 , so it intersects U1. Let W ⊆ {x :
∂(x, U2) < r} be open, non-empty with W ⊆ U1. Then by continuity of the
function ∂(·, W), there exists x ∈ U2 with ∂(x, W) < r. So ∂(U1, U2) < r. �

4. Continuity of the stabilizer map

Let Y be a locally compact space and let 2Y denote the space of closed subsets
of Y. The Chabauty topology on 2Y is given by the subbasis of sets of the form

OK = {F ∈ 2Y : F ∩ K = ∅} and OU = {F ∈ 2Y : F ∩U 6= ∅}
with K ⊆ Y compact and U ⊆ Y open. The space 2Y equipped with this topology
is compact. A map φ : X → 2Y is upper semi-continuous if φ−1(OK) is open for
every compact subset K of Y and it is lower semi-continuous if φ−1(OU) is open for
every open subset U of Y.

If G is a locally compact group, the set Sub(G) of closed subgroups of G is
closed in 2G, and hence, a compact space. Moreover, the conjugation action of G
on Sub(G) is continuous.

Definition 4.1. Let X be a G-flow. For x ∈ X, let Gx denote the stabilizer of x.
The map Stab : X → Sub(G) defined by Stab(x) = Gx is called the stabilizer map
associated to the flow X.

It is easy to see that for every G-flow, the stabilizer map is G-equivariant and
upper semi-continuous (see, e.g., [GW]). It is also well-known that in general it is
not continuous. The main theorem of the paper is the following.

Theorem 4.2. Let G be a locally compact group and let X be a Gleason complete G-flow.
Then the stabilizer map X → Sub(G), x 7→ Gx is continuous.

The remainder of this section is devoted to the proof of the theorem. Let
‖·‖ : G → R+ be a pseudo-norm on G. We recall that Br denotes the set of
elements g ∈ G such that ‖g‖ < r; we also let B̄r be the set of elements g ∈ G
such that ‖g‖ ≤ r. Recall that if X is a G-flow, we associated, by the equation
(3.2), a pseudo-metric ∂ on X. The following is the main lemma.

Lemma 4.3. Let G be a locally compact, σ-compact group and let ‖·‖ be a continuous,
proper, normal pseudo-norm on G. Let X be a Gleason complete G-flow, let g ∈ G and
r > 0. Then there exist n ≥ 1 and a continuous function φ : X → Rn such that for all
x ∈ X

(4.1) ∂(g · x, x) > r =⇒ ‖φ(g · x)− φ(x)‖∞ ≥ r/3.
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Proof. Since ‖·‖ is normal, g and g−1 are uniformly continuous as self-maps of
(X, ∂). So let δ < r/3 and δ′ be such that

∀x, y ∈ X ∂(x, y) < δ =⇒ ∂(g · x, g · y) < r/3

∀x, y ∈ X ∂(g · x, g · y) < δ′ =⇒ ∂(x, y) < δ.

Since ‖·‖ is continuous and proper, one can find g1, . . . , g` such that B̄2r is
contained in

⋃`
i=1 giBδ/2. By the pigeonhole principle, this implies that a ball of

radius 2r in (X, ∂) cannot contain more than ` points which are pairwise at least
δ apart. That is, for every x, x1, . . . , x`+1 ∈ X such that ∂(x, xi) ≤ 2r for all i,
there are i 6= j such that ∂(xi, xj) < δ. Similarly, there is k ∈ N such that for
all x, x1, . . . , xk+1 ∈ X such that ∂(x, xi) ≤ 2r for all i there are i 6= j such that
∂(xi, xj) < δ′. Set n = k + `+ 1.

Set Mr = {x : ∂(g · x, x) > r}. We will construct open sets U1, . . . , Un ⊆ X with
the following properties:

(i) the closure of
⋃

i BδUi contains Mr;
(ii) ∂(Ui, Uj) ≥ δ for i 6= j;

(iii) ∂(g ·Ui, Ui) ≥ r for all i.
Once the construction is completed, we finish the proof as follows. We set

φi(x) = min(∂(x, Ui ), r)

and φ = (φi)i. By Theorem 3.2, φ is continuous. To see that φ satisfies the
conclusion, in view of (i) it is enough to see that ||φ(g · x)− φ(x)||∞ ≥ r/3 for
every x in

⋃
i BδUi. So let x ∈ BδUi and let y ∈ Ui be such that ∂(x, y) < δ. Then

∂(g · x, g · y) < r/3 and using Corollary 3.8, we obtain

∂(g · x, Ui ) ≥ ∂(g · y, Ui )− ∂(g · y, g · x)
≥ ∂(g ·Ui , Ui )− r/3

= ∂(g ·Ui, Ui)− r/3 ≥ 2r/3.

So
||φ(g · x)− φ(x)||∞ ≥ φi(g · x)− φi(x) ≥ 2r/3− δ ≥ r/3

and we are done.
Now we proceed with the construction. Using Zorn’s lemma, we find a max-

imal (under inclusion) tuple of open sets (Ui) satisfying (ii) and (iii) above. We
will show that it must also satisfy (i). If not, there exists x0 ∈ Mr and an open
neighborhood W0 of x0 such that ∂(W0, Ui) ≥ δ for all i. By lower semi-continuity
of ∂, there is an open neighborhood W1 of x0 such that ∂(W1, g ·W1) ≥ r. Suppose
that there exists j ≤ n such that

• ∂(g · x0, Uj) > r;
• ∂(x0, g ·Uj) > r.

Since both conditions are open, there exists an open neighborhood W2 of x0 such
that ∂(W2, g · Uj) ≥ r, and ∂(g ·W2, Uj) ≥ r. This implies that if we set W =
W0 ∩W1 ∩W2, we can add W to Uj without violating (ii) or (iii), thus contradicting
the maximality of (Ui). So our final task in order to obtain a contradiction is to
find j satisfying the two conditions above. First, note that

|{i : ∂(g · x0, Ui) ≤ r}| ≤ `.

Indeed, suppose to the contrary that there exist yi0 ∈ Ui0 , . . . , yi` ∈ Ui` with
∂(yis , g · x0) < 2r for all s ≤ `. Then the yis are `+ 1 points in a ball of radius 2r
which are pairwise δ apart by (ii), which contradicts the definition of `.
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Similarly,
|{i : ∂(x0, g ·Ui) ≤ r}| ≤ k,

because if there exist yi0 ∈ Ui0 , . . . , yik ∈ Uik with ∂(x0, g · yis) < 2r for all s, then
by the choice of k, there exist s 6= t with ∂(g · yis , g · yit) < δ′. Now the choice of δ′

implies that ∂(yis , yit) < δ, contradicting (ii). Now by the choice of n, there exists
j as desired. �

Proof of Theorem 4.2. It is a general fact that the stabilizer map is upper semi-
continuous, so we only have to prove lower semi-continuity. So for every open
subset O of G, we have to prove that

XG,O := {x ∈ X : Gx ∩O 6= ∅}
is an open subset of X. Clearly it is enough to do this for every relatively compact
open subset O.

Let L be the subgroup of G generated by O. The subgroup L is open, so the
L-flow X is also Gleason complete (by Corollary 2.7). Moreover, L is compactly
generated, so, in particular, σ-compact. Since XG,O = XL,O, it follows that it is
enough to prove the desired conclusion under the assumption that the group is
σ-compact. From now on, we make this assumption.

We fix x0 ∈ XG,O. Let g ∈ O be such that g · x0 = x0 and let V 3 1G be open
such that Vg ⊆ O. Now we find a neighborhood U0 of x0 that is contained in
XG,Vg ⊆ XG,O. Since G is σ-compact, by Proposition 3.1, there are r > 0 and
a continuous, proper, normal pseudo-norm || · || on G such that B2r ⊆ V. If
φ : X → Rn is a continuous function as given by Lemma 4.3, then we have

U0 := {x ∈ X : ||φ(g · x)− φ(x)||∞ < r/3} ⊆ {x ∈ X : ∂(g · x, x) ≤ r}
⊆ {x ∈ X : x ∈ B2rg · x}
⊆ XG,Vg.

So U0 is an open neighborhood of x0 that has the desired property. �

Remark 4.4. If G is second countable and the flow G y X is metrizable, then it is
also possible to obtain a metrizable irreducible extension X′ of X for which the
stabilizer map is continuous. For this, it is enough to apply Lemma 4.3 to some
fixed proper norm ‖·‖ on G, a countable, dense subset of g ∈ G and all rational
numbers r to obtain a countable collection of φ ∈ C(X̂G) that will witness the
continuity of Stab. Then one can take X′ to be the spectrum of the (separable)
closed, G-invariant sublattice of C(X̂G) generated by C(X) and this countable
collection and the proof of the theorem goes through. (The reason is that the
functions φ that we construct are 1-Lipschitz with respect to ∂, so that if φ is a
witness for some g ∈ G, then it is also a witness for all g′ sufficiently close to g
with constants in (4.1) perhaps slightly worse than r and r/3.)

5. Stabilizer flows

Throughout this section, let G be a locally compact group. The continuity
of the stabilizer map allows us to associate to any Gleason complete flow X a
subflow of Sub(G), namely, the image of the stabilizer map. As every flow has a
unique universal irreducible extension, this leads us to the following definition.

Definition 5.1. Let G be locally compact and let G y X be a G-flow. The stabilizer
flow SG(X) of X is the subflow of Sub(G) given by

SG(X) := Stab(X̂G) = {Gz : z ∈ X̂G}.

We have the following general facts about the stabilizer flow.



CONTINUITY OF THE STABILIZER MAP 15

Proposition 5.2. Let G y X be a G-flow and let π : X̂G → X be the universal irre-
ducible extension of X. Then the following hold:

(i) For any compact K ⊆ G, the set

DK := {z ∈ X̂G : z /∈ K · z and π(z) ∈ K · π(z)}
is nowhere dense in X̂G.

(ii) For any dense subset X′ ⊆ X, we have that SG(X) ⊆ Stab(X′).
(iii) If x ∈ X is a point of continuity of Stab, then Gx ∈ SG(X).
(iv) If the set X0 ⊆ X of continuity points of Stab is dense in X, then SG(X) =

Stab(X0).

Proof. (i) Let U ⊆ X̂G be non-empty, open. We will find a non-empty, open subset
of U disjoint from DK. Let z0 ∈ U ∩ DK (if there is no such z0, we are done). The
set {(z, z′) ∈ X̂2

G : z /∈ K · z′} is open and (z0, z0) belongs to it, so there exists a
neighborhood U′ of z0, U′ ⊆ U, such that K ·U′ ∩U′ = ∅. By irreducibility of π,
the set π∗(U′) is non-empty and for any x ∈ π∗(U′), we have that x /∈ K · x. Thus
the open set π−1(π∗(U′)) ⊆ U′ is disjoint from DK.

(ii) Let z0 ∈ X̂G and let

U = {H ∈ Sub(G) : H ∩O1 6= ∅, . . . , H ∩On 6= ∅, H ∩ K = ∅},
where O1, . . . , On ⊆ G are open and K ⊆ G is compact, be a neighborhood of Gz0

in Sub(G). Our goal is to find x ∈ X′ with Gx ∈ U. Let U = {z ∈ X̂G : Gz ∈ U}
and note that by continuity of the stabilizer map, U is open. By (i), the open set
U \ DK is non-empty. We claim that any x ∈ π∗(U \ DK ) ∩ X′ works. Indeed,
fix such an x and let z ∈ X̂G be such that π(z) = x. As z /∈ DK, we have that
Gx ∩ K = ∅ and as Gz ≤ Gx, we also have that Gx ∩Oi 6= ∅ for all i, so Gx ∈ U.

(iii) Let x be a point of continuity of Stab and let

U := {H ∈ Sub(G) : H ∩O1 6= ∅, . . . , H ∩On 6= ∅, H ∩ K = ∅}
be a neighborhood of Gx, where each Oi ⊆ G is open and K ⊆ G is compact. Let
O′i ⊆ G be open, relatively compact with O′i ⊆ Oi such that Gx ∈ U′, where

U′ := {H ∈ Sub(G) : H ∩O′1 6= ∅, . . . , H ∩O′n 6= ∅, H ∩ K = ∅}.
By the continuity of Stab at x, there is an open W 3 x with Stab(W) ⊆ U′.
By (i), the set

⋃
i DO′i

is nowhere dense, so there exists z ∈ π−1(W) \ ⋃i DO′i
.

Then z ∈ O′i · z ⊆ Oi · z for every i and Gz ∩ K = ∅ (because π(z) ∈ W and
Gz ≤ Gπ(z)). Thus Gz ∈ U. As U was arbitrary and SG(X) is closed, this implies
that Gx ∈ SG(X).

(iv) follows from (ii) and (iii). �

The following is well-known and follows from [K2, Theorem VII]. We include
a short proof for completeness.

Lemma 5.3. Let X be a compact space, Y a locally compact space, and let ϕ : X → 2Y be
upper semi-continuous. Let (Ui)i∈I be a basis for the topology on Y such that each Ui is
relatively compact. For i ∈ I, we let

Xi =
{

x ∈ X : φ(x) ∩Ui 6= ∅
}

.

Then φ is continuous at each point of the set
⋂

i(X \ ∂Xi).
In particular, if Y is second countable, then the set of continuity points of φ is comeager.

Proof. Let x ∈ ⋂i(X \ ∂Xi), and let (xa) be a net in X converging to x and such
that (φ(xa)) converges to F. By upper semi-continuity, we know that F ⊆ φ(x),
and we want to prove equality. Let i such that φ(x)∩Ui 6= ∅, i.e., x ∈ Xi. Since x
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is in X \ ∂Xi by assumption, x must be in the interior of Xi. Since (xa) converges
to x, eventually xa ∈ Xi, that is, φ(xa) ∩Ui 6= ∅. Since Ui is compact, this implies
F ∩Ui 6= ∅. So whenever φ(x) intersects Ui , so does F. Since (Ui)i∈I is a basis
for the topology on Y, this shows that φ(x) ⊆ F, as desired.

Note that Xi is always closed by upper semi-continuity, so X \ ∂Xi is a dense
open subset. In case Y is second countable, (Ui)i∈I can be chosen to be countable,
and hence the domain of continuity of φ is comeager. �

Corollary 5.4. Let G be second countable and let G y X be a G-flow. Then the set
X0 ⊆ X of continuity points of Stab is dense Gδ in X and we have

SG(X) = Stab(X0).

Proof. The first claim follows from the upper semi-continuity of the stabilizer map
and Lemma 5.3, and the second claim follows from (iv) of Proposition 5.2. �

Remark 5.5. When G is not second countable, it is no longer true that there exists
x ∈ X such that Gx ∈ SG(X). Indeed, consider the group G = SO(3, R), equipped
with the discrete topology, acting on the 2-dimensional sphere X = S2. Then
Gx 6= {1G} for all x ∈ X. On the other hand, every non-identity element has
only two fixed points in X, so the action is topologically free, which means that
SG(X) =

{
{1G}

}
(see Corollary 5.7). Here the set of continuity points of Stab is

empty.

In the case where X is minimal, stabilizer flows have already been considered
in the literature under the name of stabilizer URSs. Recall that a uniformly recur-
rent subgroup (URS) of G is a minimal subflow of Sub(G). Glasner and Weiss [GW]
associated to every minimal G-flow its stabilizer URS as follows. Upper semi-
continuity of the stabilizer map implies that Stab(X) has a unique minimal sub-
flow (see [AG, Lemma 1.1] or [GW, Proposition 1.2]). Then the stabilizer URS of
X is simply defined to be this minimal subflow. Proposition 5.2 implies that for
minimal flows, our definition and theirs coincide.

Corollary 5.6. Let X be a minimal G-flow. Then its stabilizer URS is equal to SG(X).

Proof. Proposition 5.2 (ii) tells us that SG(X) ⊆ Stab(X). As X is minimal, X̂G is
also minimal and so is its factor SG(X). Now the conclusion follows from the fact
that Stab(X) has a unique minimal subflow. �

Corollary 5.4 was also known for minimal X: see [GW, Proposition 1.2].
Recall that a flow G y X is called topologically free if for every compact K ⊆ G

that does not contain 1G, the closed set {x ∈ X : x ∈ K · x} has empty interior. A
point x ∈ X is called free if the orbit map G → G · x, g 7→ g · x is injective. A flow
is called free if all points are free. It is clear that a flow for which the free points
are dense is topologically free, and a simple Baire category argument shows that
the converse is also true if G is second countable.

Corollary 5.7. Let G y X be a G-flow. Then the following are equivalent:
(i) X is topologically free;

(ii) X̂G is free;
(iii) SG(X) =

{
{1G}

}
.

In particular, topologically free Gleason complete flows are free.

Proof. The equivalence of (ii) and (iii) follows from the definition of SG(X).
(i) ⇒ (ii) Since X̂G → X is irreducible, the assumption that X is topologically

free implies that X̂G is also topologically free. Let g ∈ G, g 6= 1G. Let V ⊆ G
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be an open, relatively compact subset with g ∈ V and 1G /∈ V . Then the set
{z ∈ X̂G : z ∈ V · z} is open by Theorem 4.2, and has empty interior by topological
freeness, so it must be empty. So we conclude that g · z 6= z for all z.

(ii)⇒ (i) Suppose, towards a contradiction, that there is a compact K ⊆ G with
1G /∈ K such that the set {x ∈ X : x ∈ K · x} has non-empty interior W. By
Proposition 5.2 (i), the set π−1(W) \ DK is non-empty and for any z in this set,
we have that z ∈ K · z, contradicting the freeness of X̂G. �

From this, it is not hard to deduce a well-known theorem of Veech.

Corollary 5.8 (Veech). Every locally compact group admits a free flow.

Proof. Let G be a locally compact group and let Sa(G) denote its Samuel compactifi-
cation, i.e., the spectrum of the Riesz space of right uniformly continuous bounded
functions on G. Then G y Sa(G) is a G-flow and G embeds densely in Sa(G)
as point evaluations. Also, the flow Sa(G) is Gleason complete by [Z2, 3.2.1] (al-
ternatively, it is not difficult to verify condition (iii) of Theorem 3.2). As the left
translation action G y G is free, Corollary 5.7 tells us that the flow Sa(G) is also
free. �
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