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Abstract
We study lattices in a product G = G1×· · ·×Gn of non-discrete, compactly

generated, totally disconnected locally compact (tdlc) groups. We assume that
each factor is quasi just-non-compact, meaning that Gi is non-compact
and every closed normal subgroup of Gi is discrete or cocompact (e.g. Gi is
topologically simple).

We show that the set of discrete subgroups of G containing a fixed cocom-
pact lattice Γ with dense projections is finite. The same result holds if Γ is non-
uniform, provided G has Kazhdan’s property (T). We show that for any com-
pact subset K ⊂ G, the collection of discrete subgroups Γ ≤ G with G = ΓK
and dense projections is uniformly discrete, hence of covolume bounded away
from 0. When the ambient group G is compactly presented, we show in addi-
tion that the collection of those lattices falls into finitely many Aut(G)-orbits.
As an application, we establish finiteness results for discrete groups acting on
products of locally finite graphs with semiprimitive local action on each factor.

We also present several intermediate results of independent interest. No-
tably it is shown that if a non-discrete, compactly generated quasi just-non-
compact tdlc group G is a Chabauty limit of discrete subgroups, then some
compact open subgroup of G is an infinitely generated pro-p group for some
prime p. It is also shown that in any Kazhdan group with discrete amenable
radical, the lattices form an open subset of the Chabauty space of closed sub-
groups.
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1 Introduction

1.1 Covolume bounds

A classical result of H. C. Wang [53] ensures in a connected semisimple Lie group
G without compact factor, the collection of discrete subgroups containing a given
lattice Γ ≤ G is finite. Soon afterwards, an important closely related result was
established by Kazhdan–Margulis [35], who proved that the set of covolumes of all
lattices in G is bounded below by a positive constant. H. C. Wang [54] subsequently
used the Kazhdan–Margulis theorem in combination with local rigidity to establish
that if G has no factor locally isomorphic to SL2(R) or SL2(C), then for every v > 0,
the set of conjugacy classes of lattices in G of covolume ≤ v is finite (see also [29,
Theorem 13.4] for the case of irreducible lattices when the group G itself is not locally
isomorphic to SL2(R) or SL2(C)).

Bass–Kulkarni showed in [6, Theorem 7.1] that none of those results holds when
G is the full automorphism group of the d-regular tree Td, with d ≥ 5, even if one
restricts to cocompact lattices. In particular, since G = Aut(Td) is compactly gener-
ated and has a simple open subgroup of index 2 (see [49]), none of the results above
can be expected to hold for cocompact lattices in compactly generated, topologically
simple, locally compact groups in general. We recall that a locally compact group is
topologically simple if it is non-trivial and the only closed normal subgroups are
the trivial ones.

In this paper, we consider cocompact lattices with dense projections in products of
non-discrete, compactly generated, topologically simple, locally compact groups. Our
goal is to show that, in this situation, similar phenomena as in the case of semisimple
Lie groups occur. Our results are actually valid for lattices in products of locally
compact groups that satisfy a condition that is weaker than simplicity. In order to
define it, we recall that a locally compact group G is called just-non-compact if it
is non-compact and every closed normal subgroup is trivial or cocompact. We say
that G is quasi just-non-compact if it is non-compact and every closed normal
subgroup is discrete or cocompact. We note that this definition is meaningful only in
the realm of non-discrete groups. As first observed by Burger-Mozes, quasi just-non-
compact groups appear naturally in the context of automorphism groups of connected
graphs with quasi-primitive local action [10, Proposition 1.2.1].

Our first main result is the following close relative of the aforementioned theorem
of H. C. Wang [53]. Throughout the paper, the abbreviation tdlc stands for totally
disconnected locally compact.

Theorem A. Let G1, . . . , Gn be non-discrete, compactly generated, quasi just-non-
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compact tdlc groups and let Γ ≤ G = G1×· · ·×Gn be a lattice such that the projection
pi(Γ) is dense in Gi for all i. Assume that at least one of the following conditions
holds.

(1) Γ is cocompact.

(2) G has Kazhdan’s property (T).

Then the set of discrete subgroups of G containing Γ is finite.

Theorem A implies in particular that any lattice Γ as in the theorem is contained
in a maximal lattice (and hence that maximal lattices exist).

Remark 1.1. In Theorem A as well as in the other statements of this introduction, we
assume that the ambient group G is totally disconnected. That restriction is rather
mild, since the presence of a connected simple factor (or more generally, a quasi just-
non-compact almost connected factor without non-trivial connected abelian normal
subgroup) implies much stronger structural constraints on the lattice Γ and on the
other factors of the ambient product group, in view of the arithmeticity results from
[14, Theorem 5.18] and [3, Theorem 1.5].

A version of the Wang finiteness theorem is established by Burger–Mozes in [12,
Theorem 1.1] for cocompact lattices with dense projections in certain automorphism
groups of trees with quasi-primitive local action. When specified to this setting,
Theorem A allows one to recover and generalize their result (see Section 1.2 below).

In [31, Theorem 1.8], Gelander–Levit provide sufficient conditions on a set of
discrete subgroups of a locally compact group G all containing a fixed finitely gen-
erated lattice Γ, to be finite. Their conditions are not satisfied a priori under the
hypotheses of Theorem A. However, the proof of the latter elaborates on some of
the ideas developed in [31]. Other ingredients are presented below. A remarkable
feature of Theorem A, and also Theorems B and C below, is that their proofs rely in
an essential way on a combination of results from the recent structure theory of tdlc
groups developed in [15, 19, 18] together with various results and ideas from finite
group theory.

Given a compact subset K ⊆ G of a locally compact group G, a subgroup H is
called K-cocompact if G = HK. The following result implies the existence of a
positive lower bound on the set of covolumes of all K-cocompact lattices with dense
projections.

Theorem B (See Theorem 5.10). Let G1, . . . , Gn be non-discrete, compactly gen-
erated, quasi just-non-compact tdlc groups. For every compact subset K ⊂ G =
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G1 × · · · ×Gn, there exists an identity neighbourhood VK such that VK ∩Γ = {1} for
every K-cocompact discrete subgroup Γ ≤ G with pi(Γ) dense in Gi for all i.

Given a compactly generated tdlc group G and a compact open subgroup U ,
any K-cocompact subgroup acts with at most r orbits on G/U , where r = |KU/U |.
Conversely, for every r > 0 there is a compact subset K ⊂ G such that any subgroup
of G acting with at most r orbits on G/U is K-cocompact (see Lemma 3.3 below).

For a discrete subgroup, the condition of K-cocompactness may be viewed as an
upper bound on the covolume. However, that condition is generally strictly stronger
than being cocompact and of covolume bounded above: indeed, Bass–Kulkarni have
shown in [6, Theorem 7.1(b),7.19–7.20] that for d ≥ 5, the group Aut(Td) contains
an infinite family (Γk) of cocompact lattices of constant covolume, and such that the
number of vertex orbits of Γk tends to infinity with k. In particular there does not
exist any compact subset K ⊂ Aut(Td) such that Γk is K-cocompact for all k.

We do not know whether there could exist a neighbourhood of the identity as in
the conclusion of Theorem B that is actually independent of K (Question 5.1 below).
See [37, Conjecture (B), IX.4.21] for a related conjecture in the case of semi-simple
groups.

Using Serre’s covolume formula, Theorem B implies that the set of covolumes of
K-cocompact lattices with dense projections in G, is finite (see Theorem 5.10 below).
As mentioned above, in the classical case of semisimple Lie groups, the combination of
the Kazhdan–Margulis theorem with local rigidity of lattices yields a much stronger
finiteness statement, due to H. C. Wang [54]. A very general version of the local
rigidity of cocompact lattices has recently been established by Gelander–Levit [31].
Using their results, we establish the following.

Theorem C (See Theorem 5.12). Let G1, . . . , Gn be non-discrete, compactly pre-
sented, quasi just-non-compact tdlc groups. For every compact subset K ⊂ G =
G1 × · · · ×Gn, the set of K-cocompact discrete subgroups Γ ≤ G with pi(Γ) dense in
Gi for all i, is contained in a union of finitely many Aut(G)-orbits.

The hypothesis of compact presentability of the factors is needed to invoke the
suitable local rigidity results from [31].

1.2 Discrete groups acting on product of graphs

A natural setting in which the previous results find applications is the study of
lattices in products of trees, and more generally products of automorphism groups of
graphs, with restricted local action. The investigation of such lattices was pioneered
by Burger–Mozes [10], [11].
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Let X be a connected graph. Given G ≤ Aut(X), a vertex x ∈ V X and an
integer ℓ ≥ 0, we denote by G

[ℓ]
x the pointwise stabilizer of the ℓ-ball around x. Thus

G
[0]
x = Gx is simply the stabilizer of x. We also denote by X(x) the vertices at

distance 1 from x, and by G
X(x)
x the permutation group induced by the action of the

stabilizer Gx on X(x). As an abstract group, it is isomorphic to Gx/G
[1]
x . We call

G
X(x)
x the local action of G at x.

We recall that a permutation group L of a set Ω is primitive if the only L-
invariant partitions of Ω are the trivial ones. The group L is quasi-primitive if it is
transitive and the only intransitive normal subgroup is trivial, and semiprimitive if
it is transitive and every intransitive normal subgroup acts freely. Primitive groups
are quasi-primitive, and quasi-primitive groups are semiprimitive.

As observed by Burger–Mozes [10, Proposition 1.2.1], quasi just-non-compact
groups appear naturally in the context of automorphism groups of connected graphs
with quasi-primitive local actions. More generally, given a connected locally finite
graph X, any closed subgroup G ≤ Aut(X) with semiprimitive local action is quasi
just-non-compact, see Proposition 6.7 below. Therefore, Theorems A, B and C can
be applied to cocompact lattices with dense projections in a product of automor-
phism groups of connected graphs with semiprimitive local actions. In particular,
Theorems A, B and C have the following direct consequence.

Corollary D. Let X1, . . . , Xn be connected locally finite graphs and for each i, let
Gi ≤ Aut(Xi) be a non-discrete closed subgroup with semiprimitive local action. Let
G = G1 × · · · ×Gn.

(A) For every cocompact lattice Γ ≤ G such that pi(Γ) is dense in Gi for all i, the
set of discrete subgroups of G containing Γ is finite.

(B) For each r > 0, there exists a constant c = c(r) such that for every cocompact
lattice Γ ≤ G with at most r orbits on

∏
V Xi and such that pi(Γ) is dense in

Gi for all i, we have Γ
[c]
x = {1} for every vertex x ∈

∏
V Xi.

(C) Assume that Xi is coarsely simply connected for all i (e.g. if Xi is a tree),
and let r > 0. Then there is, up to the action of Aut(G), only finitely many
cocompact lattices Γ ≤ G with at most r orbits on

∏
V Xi and such that pi(Γ)

is dense in Gi for all i.

Statement (A) extends the main result of [12] from quasi-primitive local actions
of almost simple type, to arbitrary semiprimitive local actions. As before, Serre’s
covolume formula immediately implies that, for a fixed r > 0, the set of covolumes
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of lattices as in (B) is a finite set. Hence Statement (B) provides a partial answer to
Question 1.2 from [12].

Our tools can also be used to study discrete subgroups Γ ≤ Aut(X1) × · · · ×
Aut(Xn) with semiprimitive local action on each factor, without assuming that the
closure of the projection pi(Γ) ≤ Aut(Xi) is a fixed closed subgroup Gi. In particular
we prove the following:

Theorem E. Let n ≥ 1 and for each i = 1, . . . , n, let Ti be a regular locally finite
tree of degree ≥ 3. There is, up to conjugation, only finitely many vertex-transitive
discrete subgroups Γ ≤ Aut(T1)×· · ·×Aut(Tn) whose local action on Ti is 2-transitive
for all i.

Note that, while the hypotheses of Corollary D imply that the number n of factors
is at least 2, the case n = 1 is allowed and meaningful in Theorem E: in that case, the
result is due to Trofimov–Weiss [52, Theorem 1.4], and relies on the Classification of
the Finite Simple Groups. Our proof of Theorem E consists of a reduction from the
case n > 1 to the case of a single factor.

Recall that a conjecture of R. Weiss [57, Conjecture 3.12] predicts that the conclu-
sion of Theorem E with n = 1 holds for discrete groups with primitive local actions.
Although it is still open in full generality, several cases of the conjecture are now
known to be true (see §6.3 for details). Our results in Section 6 provide a reduction
from the case of n factors to the case of a single factor; see Theorem 6.8. In particular
we provide a partial solution to a conjecture due to Y. Glasner [33, Conjecture 1.5].

In the rest of the introduction, we discuss some of the proof ingredients of the
results presented above.

1.3 A substitute for a theorem of Zassenhaus

For a locally compact group G, we write Sub(G) for the space of closed subgroups
of G. Endowed with the Chabauty topology [21], the space Sub(G) is compact.

It is a classical fact that a connected Lie group can be approximated by its
discrete subgroups in the Chabauty topology only if it is nilpotent [36]. In particular
a non-compact simple Lie group G cannot be approximated by discrete subgroups.
Actually in this setting G is an isolated point in Sub(G) [30, Proposition 13.6].
This is no longer true for compactly generated simple tdlc groups. For example the
group Aut(T )+ of automorphisms of a regular tree T can be approximated by proper
subgroups. An explicit sequence of subgroups approximating Aut(T )+ may be found
within the family of groups constructed by N. Radu in [41] (see the appendix in [17]).
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The proofs of Theorems A, B and C are based on a study of the collection
LK of all K-cocompact discrete subgroups Γ ≤ G = G1 × · · · × Gn with dense
projections in a product of quasi just-non-compact groups. A key point that we
establish is the fact that LK is a closed subset of Sub(G), and is therefore compact
(see Theorem 5.2 below). An important ingredient of independent interest in the
proof of Theorem 5.2 is the following result, which provides sufficient conditions
for a non-discrete, compactly generated, quasi just-non-compact tdlc group to be
isolated from the set of its discrete subgroups in the Chabauty topology.

Theorem F. Let G be a non-discrete, compactly generated, quasi just-non-compact
tdlc group. If an open subgroup of finite index in G is a Chabauty limit of a sequence
of discrete subgroups of G, then there is a prime p and a compact open subgroup
V ≤ G such that V is a pro-p group that is not topologically finitely generated.

That result may be interpreted as an analogue of the classical result of Zassenhaus
ensuring that every Lie group G has an identity neighbourhood U such that for each
discrete subgroup Γ ≤ G, the intersection Γ∩U is contained in a connected nilpotent
Lie subgroup of G (see [58] and [42, Theorem 8.16]). The proof of Theorem F relies
in an essential way on results from [19] and [18] on the structure of tdlc groups and
their locally normal subgroups. It is also inspired by the proof of the Thompson–
Wielandt theorem in finite group theory and its variants for discrete automorphism
groups of graphs with primitive local action (see e.g. [10, Theorem 2.1.1]).

1.4 Chabauty neighbourhoods of lattices in Kazhdan groups

The proof of Theorem A in the case of non-uniform lattices in Kazhdan groups also
relies on Chabauty considerations, and essentially splits into two parts. The first
one is similar to the aforementioned Theorem 5.2, and consists in proving that, in
the setting of Theorem A, the collection of discrete subgroups of G containing a
non-uniform lattice Γ is Chabauty closed (see Proposition 5.9). The second one is
given by the following additional result which is of independent interest.

Theorem G. Let G be a locally compact group with Kazhdan’s property (T), such
that the amenable radical R(G) is discrete. Then the set of lattices in G forms an
open subset of the Chabauty space Sub(G). More precisely, for any lattice Γ ≤ G,
there is an identity neighbourhood U in G such that the set of those lattices Λ ≤ G
with Λ ∩ U = {1} is a neighbourhood of Γ in Sub(G).

The proof uses an important continuity property of induction of unitary repre-
sentations, due to J. Fell [25], which implies that the set of closed subgroups of finite
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covolume in a second countable locally compact group with property (T) is Chabauty
open (see Theorem A.1).

1.5 Irreducibility

Another important point in the proof of Theorems A, B and C is the notion of
irreducibility for lattices in products. While the density of the projections of a lattice
in a product of 2 non-discrete factors can be viewed as a condition of irreducibility,
this is no longer the case for a product of n > 2 factors. Indeed, a lattice Γ in a
product of 4 factors G1 × · · · × G4 can have dense projections and be the direct
product of two subgroups, that are respectively lattices in G1 × G2 and G3 × G4.
Since that issue is directly relevant to the proofs of the results above in case of more
than 2 factors, we take this opportunity to identify various possible definitions of
irreducibility for lattices in products, and clarify the logical relations between them.

Consider again a product group G = G1 × . . . × Gn. For Σ ⊆ {1, . . . , n}, we
denote the associated sub-product by GΣ =

∏
j∈ΣGj. We denote by pΣ : G → GΣ

the projection on GΣ. We identify GΣ with its natural image in G. When Σ = {i}
is a singleton, the projection to Gi is denoted by pi, as above.

Assume now that G1, . . . , Gn are non-discrete locally compact groups and let
Γ ≤ G = G1 × . . . × Gn be a lattice. Each of the following conditions, may be seen
as expressing the fact that Γ is irreducible.

(Irr0) For every partition Π ∪ Σ = {1, . . . , n} with Π,Σ ̸= ∅, the subgroup (GΠ ∩
Γ)(GΣ ∩ Γ) is of infinite index in Γ.

(Irr1) For every Σ ( {1, . . . , n}, the projection pΣ : Γ → GΣ has dense image.

(Irr1′) For every Σ ( {1, . . . , n}, the closure of the image of pΣ : Γ → GΣ contains∏
i∈ΣG+

i , where G+
i is a non-discrete closed cocompact normal subgroup of Gi.

(Irr2) For every non-empty Σ ⊆ {1, . . . , n}, the projection pΣ : Γ → GΣ is injective.
Equivalently, pi : Γ → Gi is injective for every i.

(Irr3) For every non-empty Σ ( {1, . . . , n}, the projection pΣ : Γ → GΣ has a non-
discrete image.

(Irr4) If a subgroup Λ ≤ Γ is isomorphic to a direct product of two non-trivial groups,
then the index |Γ : Λ| is infinite.
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As mentioned above, when n = 2, it is customary to adopt the condition (Irr1)
as the definition of the irreducbility of Γ. In his book [37], Margulis studies the
case where each factor is an absolutely almost simple algebraic group Gi over a non-
discrete locally compact field ki. In that context, he adopts the condition (Irr0)
as the definition of the irreducibility of Γ (see [37, Definition II.6.5]). Using [37,
Theorem II.6.7] and [37, Theorem IV.4.10], if follows that if Gi is adjoint and
of ki-rank ≥ 1, then the irreducibility conditions (Irr0), (Irr1′), (Irr2), (Irr3)
and (Irr4) are all equivalent. The conditions (Irr1)–(Irr4) are considered in [16,
§2.B]. Under the hypothesis that each Gi is an isometry group of a proper CAT(0)
space satisfying suitable natural conditions, it is shown in [16, Proposition 2.2] that
(Irr2) ⇒ (Irr3) ⇒ (Irr4), while the implication (Irr4) ⇒ (Irr2) generally fails in
that context.

The following result shows how those conditions relate to one another in case of
compactly generated quasi just-non-compact groups.

Theorem H. Let G1, . . . , Gn be non-discrete, compactly generated, tdlc groups and
Γ ≤ G = G1 × . . .×Gn be a cocompact lattice such that pi : Γ → Gi has dense image
for every i = 1, . . . , n.

(i) If Gi is quasi just-non-compact for all i, then

(Irr2) ⇒ (Irr0) ⇔ (Irr1′) ⇔ (Irr3) ⇐ (Irr4).

(ii) If Gi is just-non-compact for all i, then

(Irr0) ⇔ (Irr1′) ⇔ (Irr2) ⇔ (Irr3) ⇐ (Irr4).

(iii) If every finite index open subgroup of Gi is just-non-compact for all i, then

(Irr0) ⇔ (Irr1′) ⇔ (Irr2) ⇔ (Irr3) ⇔ (Irr4).

We make several comments about the statement:

1) Every non-discrete, compactly generated, quasi just-non-compact tdlc group G
has a smallest cocompact normal subgroup, denoted by G(∞); it is non-discrete
and coincides with the intersection of all finite index open subgroups of G (see
Proposition 2.9). Thus G+

i may be replaced by G
(∞)
i in (Irr1′) when Gi is

quasi just-non-compact.
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2) Among the above implications, (Irr3) ⇒ (Irr1′) is the most significant one.
Together with (Irr1′) ⇒ (Irr2), they are the only ones where the assumption
that the factors are (quasi) just-non-compact is crucially used. We refer to
Section 4.2 for more precise information on the logical relations amongst the
conditions (Irr0)–(Irr4) under weaker assumptions on the factors.

3) The implication (Irr0) ⇒ (Irr2) in statement (i) does not hold. Explicit
examples show that a cocompact lattice Γ with dense projections in a product
of quasi just-non-compact groups may fail to satisfy (Irr2) (see from [11] and
[16]). Such lattices are usually not residually finite (see [16, Proposition 2.5],
[20, §5.4] and Corollary 4.15 below). See also Corollary 4.16 for conditions that
are equivalent to (Irr2) in the context of Theorem H (i).

4) Notice that (Irr4) can be viewed as a condition involving all finite index sub-
groups of Γ. It is thus not surprising that its equivalence with the other irre-
ducibility conditions requires a hypothesis on G that is robust enough to be
inherited by the finite index open subgroups of G.

5) The hypothesis of cocompactness of Γ in Theorem H and its corollaries is only
used to ensure that the intersection of Γ with suitable open subgroups of G are
finitely generated. Those statements remain true for non-uniform lattices if one
assumes in addition that G has Kazhdan’s property (T); see Propositions 4.2
and 4.6 and Remark 4.12 for appropriate modifications in the proofs.

6) The Bader–Shalom Normal Subgroup Theorem [4] deals with irreducible lat-
tices in products of just-non-compact groups. Combining Theorem H with
their result, we shall establish a version of the Normal Subgroup Theorem for
lattices in products of quasi-just-non-compact groups, see Corollary 4.16 below.

A simple decomposition process allows, given a lattice Γ with dense projections in
a product of quasi just-non-compact groups, to decompose Γ (up to passing to a finite
index overgroup) as a product of factors all satisfying the irreducibility condition
(Irr3) (see Corollary 4.13). Theorem H then ensures that each piece also satisfies
(Irr0) and (Irr1′). As a by-product, we obtain the following supplementary result
for lattices in the product of three quasi just-non-compact tdlc groups.

Corollary I. Let G1, G2, G3 be non-discrete, compactly generated, quasi just-non-
compact tdlc groups. Let Γ ≤ G1×G2×G3 be a cocompact lattice such that pi : Γ → Gi

has dense image for i = 1, 2, 3. Then the equivalent conditions (Irr0), (Irr1′) and
(Irr3) from Theorem H(i) are automatically satisfied.
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Organization

Section 2 contains preliminary results about general compactly generated tdlc groups,
with a special emphasis on quasi just-non-compact groups in §2.3.

In Section 3 we study Chabauty approximations of non-discrete, compactly gen-
erated, quasi just-non-compact tdlc groups, and prove Theorem F. This section,
notably §3.1, also contains preliminary results that are used in later sections.

Section 4 deals with the aforementioned irreducibility conditions for lattices in
products, and contains the proofs of Theorem H and Corollary I. An important
ingredient for these proofs is Proposition 4.6.

The main task of Section 5 is to prove Theorem 5.2, which is the key intermediate
step in the proofs of Theorems A, B and C. The proof of Theorem 5.2 relies on all
the previous sections, and notably on Proposition 4.6.

Section 6 is concerned with discrete groups acting on product of graphs with
semiprimitive local action on each factor, and contains the proof of Corollary D. We
also prove additionnal results, namely Theorem 6.8 and Corollary 6.10, from which
we deduce Theorem E.

Finally the proof of Theorem G, which is used in Section 5 in the proof of Theo-
rem A in the case of Kazhdan groups, is presented in an appendix.
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2 On the structure of tdlc groups

2.1 Preliminaries

A locally compact group G is residually discrete if the intersection of all open
normal subgroups of G is trivial. We will invoke the following result from [15, Corol-
lary 4.1].

Proposition 2.1. A compactly generated locally compact group G is residually dis-
crete if and only if the compact open normal subgroups form a basis of identity neigh-
bourhoods in G.

The following result is a direct consequence of a very general result due to Colin
Reid [43, Theorem G]. We provide a direct proof for the reader’s convenience.
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Proposition 2.2. Let G be a compactly generated locally compact group with a dis-
crete normal subgroup N such that G/N has a basis of identity neighbourhoods con-
sisting of compact open normal subgroups. Then G also has this property.

Proof. If this is not the case, then we may find a compact open subgroup U such that
U ∩N = 1 and U contains no open normal subgroup of G. Note that this implies in
particular that G is not discrete.

Let K be the normal core of U in G, and π : G → G/K the quotient map.
Note that π(U) is a compact open subgroup of π(G) that contains no non-trivial
normal subgroup of π(G). Moreover the group π(G) admits π(N) as a discrete
normal subgroup, and the quotient π(G)/π(N) ≃ G/KN has a basis of identity
neighbourhoods consisting of compact open normal subgroups since it is a quotient
of G/N . So in order to obtain our contradiction we may assume that K = 1.

Consider the family F of open normal subgroups of G containing N . By Propo-
sition 2.5 in [15], the group

∩
F M intersects U non-trivially. But the assumption on

G/N implies that the subgroup
∩

F M is equal to N . So we obtain that U ∩ N is
non-trivial, which is our contradiction.

A locally compact group is locally elliptic if every compact subset is contained in
a compact subgroup, and the locally elliptic radical is the largest normal subgroup
that is locally elliptic. The polycompact radical W (G) of a locally compact group
G is the union of all compact normal subgroups of G. As observed by Tits, the
subgroup W (G) is not necessarily closed in G. The examples given in [48, Proposition
3] are such that every compact normal subgroup is finite, but the subgroup that they
generate is a proper dense subgroup. However when G is compactly generated, W (G)
is a closed subgroup of G: see [22, Theorem 1.2] and references given there, notably
[51]. In particular for a compactly generated group, the property that W (G) is
discrete, considered repeatedly in the article, is equivalent to the property that every
compact normal subgroup of G is finite.

The following fact will be used repeatedly.

Proposition 2.3. Let G be a locally compact group and H a cocompact closed sub-
group. Then every compact normal subgroup of H is contained in a compact normal
subgroup of G.

Proof. By [22, Proposition 2.7], every compact normal subgroup K of H is con-
tained in the polycompact radical W (G). By definition, the polycompact radical
is a subgroup of the locally elliptic radical (see [22, Proposition 2.4(6)]). Since the
normalizer of K in G contains H, and is thus cocompact in G, and it follows that the
union X of the conjugacy classes of elements of K is a compact subset of G. Since
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X is contained in the locally elliptic radical of G, it follows that the closed subgroup
generated by X is compact. This subgroup is also normal in G and contains K,
hence the statement.

Following Burger–Mozes, the quasi-center of a locally compact group G is the
set QZ(G) of those elements whose centralizer is open. The quasi-center is a (possibly
non-closed) topologically characteristic subgroup of G containing all discrete normal
subgroups. Recall that a subgroup is topologically characteristic if it is invariant
by all topological group automorphisms.

Proposition 2.4. Let G be a compactly generated tdlc group, and Γ a cocompact
lattice in G. Then there exists a compact normal subgroup K▹G such that KΓ∩NG(Γ)
has finite index in NG(Γ).

Proof. The subgroup Γ is cocompact in the compactly generated group G, so Γ is
finitely generated. Since Γ is a discrete normal subgroup of NG(Γ), Γ lies in the quasi-
center of NG(Γ), i.e. every element of Γ centralizes an open subgroup of NG(Γ). But
since Γ is finitely generated, it follows that the centralizer CG(Γ) is open in NG(Γ).
If U is a compact open subgroup of NG(Γ) centralized by Γ, then UΓ is a subgroup
that is open and cocompact in NG(Γ) since Γ is cocompact in G. Therefore UΓ has
finite index in NG(Γ). Now the compact subgroup U has a cocompact normalizer
in G, so it follows from Proposition 2.3 that U is contained in a compact normal
subgroup K of G, and KΓ indeed contains a finite index subgroup of NG(Γ).

Proposition 2.4 has the following consequence:

Corollary 2.5. Let G be a compactly generated tdlc group with a discrete poly-
compact radical. Then every cocompact lattice Γ ≤ G has finite index in its normal-
izer NG(Γ).

Proof. Let K be as in the conclusion of Proposition 2.4. Since G has a discrete
polycompact radical, the subgroup K must be finite, and it follows that Γ has finite
index in KΓ ∩NG(Γ). Since KΓ ∩NG(Γ) has finite index in NG(Γ), the conclusion
follows.

The special case of the following result when G is topologically simple is due to
Barnea–Ershov–Weigel [5, Theorem 4.8]. Recall that a group G is topologically
characteristically simple if the only closed topologically characteristic subgroups
of G are the trivial ones.

Proposition 2.6. Let G be a non-discrete, non-compact, compactly generated tdlc
group that is topologically characteristically simple. Then QZ(G) = {1} = W (G).
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Proof. The polycompact radical W (G) is a topologically characteristic subgroup.
Assume it is non-trivial. Thus it is dense by hypothesis. Since G is compactly gen-
erated, the radical W (G) is closed by [22, Theorem 1.2], so G = W (G). Since the
polycompact radical is a subgroup of the locally elliptic radical (see [22, Proposi-
tion 2.4(6)]), it follows that G is locally elliptic. Since G is compactly generated, this
implies that G is compact, contradicting the hypotheses. Hence W (G) = {1}.

We next observe that the quasi-center is also a topologically characteristic sub-
group. Assume that QZ(G) is non-trivial. Thus it is dense by hypothesis. It then
follows from [15, Proposition 4.3] that the compact open normal subgroups of G form
a basis of identity neighbourhoods. In particular W (G) is dense, contradicting the
first part of the proof.

2.2 Monolithic and just-non-compact groups

A locally compact group G is monolithic if the intersection of all non-trivial closed
normal subgroups is itself non-trivial. That intersection is then called the monolith
of G, denoted by Mon(G). Clearly, every non-trivial minimal closed normal subgroup
in a locally compact group must be topologically characteristically simple. Thus a
source of groups to which Proposition 2.6 applies is given by the monolith of a
compactly generated tdlc group, provided that this monolith is cocompact.

The following consequence of [15, Theorem E] clarifies the link between monolithic
groups with a cocompact monolith and just-non-compact groups. A locally compact
group is called hereditarily just-non-compact if every finite index open subgroup
is just-non-compact.

Proposition 2.7. Let G be a compactly generated non-discrete tdlc group.

(i) G is just-non-compact if and only if G is monolithic with a non-discrete co-
compact monolith. In particular if G is just-non-compact, then QZ(G) = 1.

(ii) G is hereditarily just-non-compact if and only if G is monolithic with a non-
discrete cocompact topologically simple monolith.

Proof. For both (i) and (ii), the ‘only if’ implications follow from [15, Theorem E].
Conversely, if G is compactly generated and monolithic such that Mon(G) is co-
compact, then by the definition of monolithicity, every non-trivial closed normal
subgroup of G contains Mon(G), and is thus cocompact in G. Moreover G cannot
be compact, since a compact tdlc group is profinite, hence residually finite, and can
thus not be monolithic. Thus the condition of part (i) is indeed sufficient. The fact
that G has trivial quasi-center then follows from Proposition 2.6.
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Assume now that G is compactly generated and monolithic such that Mon(G) is
cocompact and topologically simple. Let H be an open subgroup of finite index in
G. Then H contains an open normal subgroup of finite index in G; in particular H
contains Mon(G). Given a non-trivial closed normal subgroup N of H, then N ∩
Mon(G) is normal in Mon(G). Since the latter is topologically simple by hypothesis,
we have N ≥ Mon(G) or N ∩Mon(G) = 1. In the latter case we deduce that N ≤
CG(Mon(G)). That centralizer is thus a non-trivial closed normal subgroup of G. It
must contain Mon(G) by definition. This implies that Mon(G) is self-centralizing,
hence abelian. This contradicts the hypothesis that Mon(G) is topologically simple
and non-discrete. We conclude that N ≥ Mon(G). Thus every non-trivial closed
normal subgroup of H contains Mon(G) and is thus cocompact. This proves that G
is hereditarily just-non-compact, as required.

2.3 Quasi just-non-compact groups

Definition 2.8. Let G be a locally compact group. We say that G is quasi just-
non-compact if G is non-compact, and every closed normal subgroup of G is either
discrete or cocompact.

Following [10], for a tdlc group G, we denote by G(∞) the intersection of all
finite index open subgroups of G. The subgroup G(∞) is closed and topologically
characteristic in G, and coincides with the intersection of all closed cocompact normal
subgroups of G.

Proposition 2.9. Let G be a non-discrete compactly generated tdlc group. The
following are equivalent:

(i) G is quasi just-non-compact;

(ii) QZ(G) is a discrete non-cocompact subgroup of G; G(∞) is a non-discrete co-
compact subgroup of G, and every closed normal subgroup of G is either con-
tained in QZ(G) or contains G(∞).

If those conditions hold, then G/QZ(G) is just-non-compact.

Proof. That (ii) implies (i) is clear by observing that non-discreteness of G(∞) implies
that G cannot be compact. We show that (i) implies (ii). Assume for contradiction
that QZ(G) is not discrete. Then by the assumption that G is quasi just-non-
compact, the subgroup H = QZ(G) is cocompact in G. According to [15, Proposition
4.3], H admits a compact open normal subgroup U , which by Proposition 2.3 must
be contained in a compact normal subgroup of G. Since every compact normal
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subgroup of G is finite, it follows that U is finite, and H is discrete. So QZ(G) was
actually discrete.

Observe that since G is quasi just-non-compact and non-discrete, an open normal
subgroup of G necessarily has finite index in G. It follows that G(∞) coincides with
the intersection of all open normal subgroups of G, i.e. G/G(∞) is a residually discrete
group. Therefore by Proposition 2.1 the group G/G(∞) admits a basis of identity
neighbourhoods consisting of compact open normal subgroups. If G(∞) is discrete,
then it follows from Proposition 2.2 that G admits compact open normal subgroups.
These are necessarily finite by (i), and it follows that G is discrete, a contradiction.
So G(∞) cannot be discrete, and hence G(∞) is cocompact in G. To obtain (ii) it
only remains to observe that QZ(G) cannot be cocompact, since othherwise it would
contain G(∞), which would therefore be discrete, a contradiction.

Finally if N is a closed normal subgroup of G containing QZ(G) properly, then N
contains G(∞), so N is cocompact in G. Thus N/QZ(G) is cocompact in G/QZ(G),
thereby confirming that G/QZ(G) is just-non-compact.

More information on the structure of compactly generated just-non-compact
groups (hence of quasi just-non-compact groups) may be found in [15], [19] and
[18]. Following those references, we say that a subgroup of a tdlc group is locally
normal if its normalizer is open. For the sake of future references, we record the
following results.

Proposition 2.10 ([18, Corollary 8.2.4]). Let G be a non-discrete, compactly gener-
ated tdlc group. Assume that G is monolithic, with non-discrete, topologically simple,
cocompact monolith. For any prime p, if G has a non-trivial compact locally normal
subgroup that is pro-p, then G has a compact open subgroup that is pro-p.

Proposition 2.11. Let G be a non-discrete compactly generated just-non-compact
tdlc group. Then for any prime p, if G has a non-trivial compact locally normal
subgroup that is pro-p, then G has a compact open subgroup that is pro-p.

Proof. By Proposition 2.7, the group G is monolithic with non-discrete cocompact
monolith M , and QZ(G) = 1. Moreover QZ(M) = 1 by Proposition 2.6. In particular
M is not abelian, so that CG(M) = {1} since otherwise we would have M ≤ CG(M)
by definition of the monolith.

By [15, Theorem E], the monolith M has finitely many minimal closed normal
subgroups N1, . . . , Nℓ that are topologically simple, and M = N1 . . . Nℓ. In particular
the G-action by conjugation on M permutes that Ni transitively. Let G0 E G the
open normal subgroup of finite index that normalizes Ni for all i. For every finite
index open subgroup G1 ≤ G0, we have M ≤ G1 since Ni∩G1 is open of finite index
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in Ni, and Ni is topologically simple. Moreover every non-trivial closed normal
subgroup N of G1 contains one of the Ni, since otherwise N would commute with Ni

for all i, hence be contained in CG(M) = {1}. Thus N1, . . . , Nℓ are the minimal closed
normal subgroups of G1. It then follows from [19, Corollary 3.3] that G1/CG1(Ni) is
monolithic with monolith NiCG1(Ni)/CG1(Ni). Notice that this monolith contains
MCG1(Ni)/CG1(Ni) and is thus cocompact. This shows that Ri = G0/CG0(Ni)
is hereditarily just-non-compact. It then follows from Proposition 2.7(ii) that the
monolith of Ri is non-discrete, topologically simple and cocompact. Therefore, if Ri

has a non-trivial compact locally normal subgroup that is pro-p, then Ri is pro-p by
Proposition 2.10.

Notice that
∩ℓ

i=1CG0(Ni) = CG0(M) ≤ CG(M) = {1}. Thus the product homo-
morphism G0 →

∏ℓ
i=1Ri is injective. Let now L be a non-trivial compact locally

normal subgroup of G that is pro-p. If L∩G0 = {1}, then L is finite, hence contained
in QZ(G) = {1}, a contradiction. Thus we may assume without loss of generality
that L ≤ G0. Since the projection G0 →

∏ℓ
i=1Ri is injective, there is i such that the

projection of L to Ri has a non-trivial image. It then follows from the previous para-
graph that Ri is locally pro-p. Since G normalizes G0 and acts transitively on the
set {N1, . . . , Nℓ}, the groups R1, . . . , Rℓ are pairwise isomorphic, so that Ri is locally
pro-p for every i. In particular, if V is a sufficiently small compact open subgroup of
G contained in G0, then the projection G0 → Ri maps V onto a pro-p subgroup of
Ri. Using again the injectivity of the product map G0 →

∏ℓ
i=1 Ri, it follows that V

is pro-p. This confirms that G has a compact open pro-p subgroup.

3 Chabauty approximations of quasi just-non-compact
groups

Recall that we denote by Sub(G) the set of closed subgroups of a locally compact
group G. The sets of the form {H ∈ Sub(G) : H ∩K = ∅; H ∩ Ui ̸= ∅ for all i },
where K ⊂ G is compact and U1, . . . , Un ⊂ G are open, form a basis for the Chabauty
topology on Sub(G). Endowed with this topology, the space Sub(G) is compact.

This section aims at studying the properties of the closed subgroups of G con-
tained in a sufficiently small neibourhood of G in its Chabauty space Sub(G), un-
der the assumption that G is a non-discrete, compactly generated, quasi just-non-
compact tdlc group.
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3.1 On the set of (r, U)-cocompact subgroups

Definition 3.1. Let G be a tdlc group, U ≤ G a compact open subgroup and r ≥ 1.
A closed cocompact subgroup H ≤ G is said to be (r, U)-cocompact if the double
coset space H\G/U has cardinality at most r. We will denote by Cr,U(G) the set of
(r, U)-cocompact subgroups of G.

In the sequel we will make use of the notion of Cayley-Abels graph. Recall
that if G is a compactly generated tdlc group and U is a compact open subgroup
of G, a Cayley-Abels graph of G associated to U is a connected locally finite graph
on which G acts vertex-transitively, and with vertex stabilizers the conjugates of U .
We refer the reader to [23] for a detailed exposition.
Lemma 3.2. Let G be a compactly generated tdlc group, U ≤ G a compact open
subgroup and r ≥ 1. Then Cr,U(G) is a clopen subset of Sub(G).
Proof. Let V be the intersection of all conjugates of U in G. Since the reduction
modulo V induces a well defined continuous surjection φ : Sub(G) → Sub(G/V )
such that φ−1(Cr,U/V (G/V )) = Cr,U(G), it is enough to prove the statement when V
is trivial. In this case G acts faithfully on any Cayley–Abels graph associated to U ,
and the statement follows from [17, Proposition 2.6].
Lemma 3.3. Let G be a compactly generated tdlc group. Then for all r, U there
exists a finite subset Σ ⊂ G such that HΣU = G for every H in Cr,U(G).

Conversely, for every finite subset Σ ⊂ G, there is a constant r such that every
closed subgroup H ≤ G with HΣU = G belongs to Cr,U(G).
Proof. Let X be a Cayley–Abels graph of G with respect to U . Then Cr,U(G) consists
of the closed subgroups of G acting with at most r orbits of vertices on X. Since X
is connected, for every H ∈ Cr,U(G), there is a set of representatives of the vertex
orbits of H that spans a connected subgraph. That subgraph has r vertices, and is
thus of diameter < r.

This shows that the r-ball around every vertex of X contains a set of representa-
tives of the H-orbits for every H ∈ Cr,U(G). It now suffices to choose a finite Σ such
that ΣU contains the r-ball around U in X.

For the converse assertion, one defines r as the number of left cosets of U in ΣU ,
and the result is clear by definition.
Lemma 3.4. Let G be a tdlc group and O ≤ G be an open subgroup. Then for all
r ≥ 1, all compact open subgroup U and all (r, U)-cocompact subgroup H ≤ G, the
intersection H ∩O is (r, U ∩O)-cocompact in O.
Proof. Indeed, the inclusion O ≤ G descends to an injective map of the spaces of
double cosets H ∩O\O/U ∩O → H\G/U .
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3.2 Approximations of quasi just-non-compact groups by their
closed subgroups

Proposition 3.5. Let G be a non-discrete, compactly generated, quasi just-non-
compact tdlc group. Then the collection of compactly generated quasi just-non-
compact closed subgroups H ≤ G forms a neighbourhood of G in Sub(G).

Proof. By Proposition 2.9, the quasi-center of G is discrete. Let U ≤ G be a compact
open subgroup with U ∩ QZ(G) = {1}. Let X be a Cayley–Abels graph for G with
vertex set G/U . We claim that G has a Chabauty neighbourhood consisting of
cocompact closed subgroups H with the following property: for each closed normal
subgroup N of H, if N ∩ U ̸= {1} then N is cocompact in G.

If the claim fails, then there is a sequence (Hk) in Sub(G) converging to G, and
a sequence (Nk) of closed normal subgroups of Hk such that Nk ∩ U ̸= {1} and Nk

is not cocompact in G for any k.
First observe that by Lemma 3.2, there is a Chabauty neighbourhood of G con-

sisting of closed subgroups H that are vertex-transitive on X (hence cocompact in
G). Let H ≤ G be closed and vertex-transitive, and let N be a closed normal sub-
group of H with N ∩ U ̸= 1. Let x ∈ V X be a vertex such that U = Gx. Then
there is r ≥ 0 such that Nx = N

[r]
x and Nx ̸≤ N

[r+1]
x . Thus for some vertex y ∈ V X

with d(x, y) = r, we have Ny ̸≤ N
[1]
y . Using that N is normal in H and that H is

vertex-transitive, we deduce that Nx ̸≤ N
[1]
x .

Coming back to the sequence (Nk) from above, we deduce that, upon extracting,
it converges to a closed normal subgroup N of G with Nx ̸≤ N

[1]
x . In particular

N ∩ U ̸= {1}. Therefore N is not contained in QZ(G), and it is thus cocompact
in G. Invoking Lemma 3.2 again, we deduce that Nk is cocompact in G for all
sufficiently large k, a contradiction. This proves the claim.

The claim directly implies that for all H ∈ Sub(G) sufficiently close to G, every
closed normal subgroup of H that is not cocompact intersects U trivially, and is thus
discrete. Thus such a group H is quasi just-non-compact.

3.3 Cocompact subgroups that are Chabauty limits of dis-
crete subgroups

Recall that a group H is called quasi-simple if H is perfect and H/Z(H) is simple.
For a finite group G, a component of G is a subnormal subgroup that is quasi-
simple. The layer of G, denoted by E(G), is the subgroup generated by all quasi-
simple subnormal subgroups.

The goal of this subsection is to establish the following.
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Proposition 3.6. Let G be a compactly generated tdlc group and U ≤ G be a compact
open subgroup with

∩
g∈G gUg−1 = {1}. Let (Γk) be a sequence of discrete subgroups

of G converging to a cocompact subgroup H ≤ G, and such that U ∩Γk ̸= {1} for all
sufficiently large k. Assume that for every conjugate V of U , we have QZ(V ∩H) =
{1}. Then the following assertions hold:

(i) E(U ∩ Γk) = {1} for all sufficiently large k.

(ii) There is a prime p such that H has an infinite compact locally normal subgroup
that is pro-p.

The following basic fact is of fundamental importance. It implies that the layer
E(G), which is a characteristic subgroup of G, is a perfect central extension of a
direct product of non-abelian simple groups.

Lemma 3.7. Let G be a finite group and H ≤ G be a subnormal subgroup. Given
a component L of G, either L ≤ H or [L,H] = {1}. In particular, any two distinct
components centralize each other.

Proof. See [1, (31.4) and (31.5)].

The Fitting subgroup of a group G, denoted by F (G), is the characteristic
subgroup generated by all nilpotent normal subgroups of G. If G is finite, then
F (G) coincides with the direct product of all Op(G), where p runs over all primes
dividing the order of G. We recall that Op(G) denotes the largest normal p-subgroup
of the finite group G. In case G is a profinite group, the same symbol denotes the
largest closed normal subgroup of G that is a pro-p group. The generalized Fitting
subgroup of a finite group G, denoted by F ∗(G), is defined as F ∗(G) = E(G)F (G).
Notice that the generalized Fitting subgroup of a non-trivial finite group is non-
trivial.

The relevance of those notions to our purposes is revealed by the following sub-
sidiary facts.

Lemma 3.8. Let X be a connected graph and let G ≤ Aut(X). Let also x, y ∈ V X.
Then for all r > d(x, y), the group G

[r]
x is a subnormal subgroup of Gy.

Proof. Let y = y0, y1, . . . , yℓ = x be a shortest path from y to x. We have

Gy D G[1]
y D G[1]

y,y1
D · · · D G[1]

y,y1,...,yℓ−1
.

Notice that Gx ≥ G
[1]
y,y1,...,yℓ−1 and that G

[r]
x ≤ G

[1]
y,y1,...,yℓ−1 for all r > ℓ = d(x, y).

Since G
[r]
x is normal in Gx, we have G

[1]
y,y1,...,yℓ−1 D G

[r]
x .
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Lemma 3.9. Let G be a compactly generated tdlc group and let U ≤ G be a compact
open subgroup with

∩
g∈G gUg−1 = {1}. Let (Γk) be a sequence of discrete subgroups

of G converging to a cocompact subgroup H ≤ G. If U ∩Γk ̸= {1} for all sufficiently
large k, then there is a conjugate V of U in G which satisfies at least one of the
following properties:

(i) E(V ∩ Γk) ̸= {1} for infinitely many k, and QZ(V ∩H) ̸= {1}.

(ii) There is a prime p such that Op(V ∩ Γk) ̸= {1} for infinitely many k, and
Op(V ∩H) ̸= {1}.

Proof. Let X be a Cayley–Abels graph for (G,U). Since
∩

g∈G gUg−1 = {1}, the
G-action on X is faitfhul. Since H is cocompact in G, it has finitely many orbits of
vertices on X. It follows from Lemma 3.2 that Γk is (r, U)-cocompact in G for all
sufficiently large k, where r = |H\G/U |.

Let x be the base vertex, i.e. the vertex corresponding to the trivial coset U in
V X = G/U . Let R be such that the ball B(x,R) contains a representative of the
J-orbits of vertices on X for all (r, U)-cocompact subgroups J (see Lemma 3.3).

Since (Γk)x ̸= {1} for all sufficiently large k, we have F ∗((Γk)x) ̸= {1}, so there
is ℓk ≥ 0 such that F ∗((Γk)x) ≤ (Γk)

[ℓk]
x and F ∗((Γk)x) ̸≤ (Γk)

[ℓk+1]
x . We claim that

there exist yk such that F ∗((Γk)yk) ̸≤ (Γk)
[2]
yk . If ℓk ≤ 1, then we may take yk = x.

If ℓ ≥ 2, then we pick yk ∈ V X with d(x, yk) = ℓk − 1 and F ∗((Γk)x) ̸≤ (Γk)
[2]
yk .

By Lemma 3.8, the group (Γk)
[ℓk]
x is subnormal in (Γk)yk , so that F ∗((Γk)

[ℓk]
x ) ≤

F ∗((Γk)yk) . Since F ∗((Γk)x) ≤ (Γk)
[ℓk]
x , we have F ∗((Γk)x) = F ∗((Γk)

[ℓk]
x ), hence

F ∗((Γk)x) ≤ F ∗((Γk)yk). Therefore F ∗((Γk)yk) ̸≤ (Γk)
[2]
yk , and we have proved the

claim. Since B(x,R) contains a set of representatives of the Γk-orbits of vertices,
we may assume that yk ∈ B(x,R), and hence upon extracting we may assume that
yk = y for some y ∈ B(x,R) and all k. We set V = Gy, which is conjugate to
U = Gx. Now we distinguish two cases.

Assume first that E((Γk)y)) ̸≤ (Γk)
[2]
y for infinitely many k. By definition of the

layer, we may find a component Lk of (Γk)y that is not contained in (Γk)
[2]
y , and

upon extracting we may assume that (Lk) converges to a subgroup L ≤ Hy with
L ̸≤ H

[2]
y . By Lemma 3.7, the component Lk commutes with (Γk)

[2]
y , so it follows

that L commutes with H
[2]
y = limk(Γk)

[2]
y (recalling that taking an intersection with

a fixed open subgroup is a Chabauty continuous operator on the Sub(G)). Thus
the centralizer of L ≤ Hy in Hy contains H

[2]
y , and is thus open. It follows that

QZ(V ∩H) = QZ(Hy) ̸= {1}. Thus the case (i) of the statement occurs.
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Assume in a second case that E((Γk)y)) ≤ (Γk)
[2]
y for all but finitely many k.

Then we have F ((Γk)y) ̸≤ (Γk)
[2]
y all but finitely many k since E((Γk)y)F ((Γk)y) =

F ∗((Γk)y) ̸≤ (Γk)
[2]
y . Since (Γk)y acts faithfully on the regular graph X fixing the

vertex y, it follows that every prime dividing the order of (Γk)y is at most the degree
of X. Therefore, there must exist a prime p such that Op((Γk)y) ̸≤ (Γk)

[2]
y for infinitely

many k. Upon extracting, the sequence Op((Γk)y) converges to a closed normal pro-
p-subgroup of Hy that is not contained in H

[2]
y . In particular Op(Hy) ̸≤ {1}, so that

the case (ii) of the statement occurs.

Proof of Proposition 3.6. We apply Lemma 3.9. Since the conclusion (i) of the
lemma is ruled out by our assumption, it follows that the conclusion (ii) must hold.
Therefore there is a conjugate V of U in G such that E(Γk ∩ V ) = {1} for all suffi-
ciently large k, and that K = Op(V ∩H) is non-trivial for some prime p. Thus K is
a locally normal subgroup of H that is pro-p. If K is finite then K must lie inside
QZ(V ∩H), which is absurd because QZ(V ∩H) is trivial. So K is infinite, and the
statement holds.

3.4 Approximations of quasi just-non-compact groups by dis-
crete subgroups

Theorem 3.10. Let L be a compactly generated tdlc group admitting a compact open
subgroup U such that

∩
l∈L lUl−1 = {1}. Assume that there exists a closed cocompact

subgroup G ≤ L that is quasi just-non-compact and non-discrete, and a sequence
of discrete subgroups of L that Chabauty converges to a finite index open subgroup
H ≤ G. Then there is a prime p and a compact open subgroup of G that is a pro-p
group.

Proof. By Proposition 2.9, the quasi-center QZ(G) is discrete, so without loss of
generality we may assume that U ∩QZ(G) = {1}. Also since QZ(G) is normal in G
and G is cocompact in L, upon passing to an open subgroup of U we may also assume
that QZ(G) intersects trivially all L-conjugates of U (by replacing U by ∩r

i=1liUl−1
i ,

where l1U, . . . , lrU are representatives for the G-orbits in L/U). Hence whenever V
is an L-conjugate of U , we have QZ(V ∩H) ≤ V ∩ QZ(G) = 1 since H in an open
subgroup of G. Since H is non-discrete, the discrete groups Γk intersect U non-
trivially for large enough k. Therefore it follows from Proposition 3.6 that there is a
prime p such that H has an infinite compact locally normal subgroup K that is pro-p.
Since H is open in G, that subgroup K is also locally normal in G. Note that (K ∩
U) ∩QZ(G) ≤ U ∩QZ(G) = 1, so the quotient group G/QZ(G) also has an infinite
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compact subgroup that is locally normal and pro-p. By Proposition 2.9 G/QZ(G)
is just-non-compact, and it is also compactly generated, so by Proposition 2.11 the
group G/QZ(G) must have an open pro-p subgroup. It follows that the same is true
in G since QZ(G) is a discrete subgroup of G.

We now complete the proof of Theorem F from the introduction.

Proof of Theorem F. We let G be a non-discrete, compactly generated, quasi just-
non-compact tdlc group, and H an open subgroup of finite index in G that is a
Chabauty limit of a sequence of discrete subgroups of G. Since G is quasi just-non-
compact, every compact normal subgroup of G is finite. In particular the group
G admits a compact open subgroup U such that

∩
g∈G gUg−1 = {1}. Hence we

may apply Theorem 3.10 with L = G, and we deduce that there exist a prime p
and an open pro-p subgroup V of G. We have to show that V is not topologically
finitely generated. Argue by contradiction and assume that V is topologically finitely
generated. Then so is W = V ∩H. Since W is also pro-p, it follows that W has an
open Frattini subgroup [24, Proposition 1.14], and hence W is an isolated point of
Sub(W ) [28, Theorem 5.6]. Since (Γk) converges to H, the sequence of intersections
(Γk∩W ) converges to W , so that Γk contains the open subgroup W for all sufficiently
large k, contradicting that Γk is discrete.

Combining Theorem F with Proposition 3.5, the following result is immediate.

Corollary 3.11. Let G be a non-discrete, compactly generated, quasi just-non-
compact tdlc group. Assume that at least one of the following conditions is satisfied:

(1) G has a compact open subgroup that is topologically finitely generated.

(2) No compact open subgroup is pro-p for any prime p.

Then the collection of non-discrete, compactly generated, quasi just-non-compact
closed subgroups H ≤ G forms a neighbourhood of G in Sub(G).

Remark 3.12. That result is of special interest when the group G is topologically
simple. If G is not an isolated point in Sub(G) and if G satisfies (1) or (2), then
G is Chabauty approximated by non-discrete, compactly generated, quasi just-non-
compact groups. Those are subjected to Proposition 2.9 and [15, Theorem E], hence
involve quasi products of compactly generated simple groups. This might be a tool
to construct new compactly generated simple groups from known ones.
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4 Irreducibility conditions for lattices in products

4.1 Cocompact closed subgroups in products

The proof of (Irr3) ⇒ (Irr1′) in Theorem H is based on Propositions 4.1 and 4.6,
which are of independent interest.

Proposition 4.1. Let G1 be a tdlc group, G2 be compactly generated locally compact
group with a discrete polycompact radical, and H ≤ G = G1×G2 a closed cocompact
subgroup. If H ∩G2 is a discrete subgroup of G2, then H ∩G1 is open in H.

Proof. Let U1 be a compact open subgroup of G1, and let O = H ∩ (U1 ×G2). Note
that O is compactly generated as it is cocompact in the compactly generated group
U1 × G2. We write N = H ∩G2, which is contained in O. The group O/N embeds
continuously in the profinite group U1, and hence O/N is residually discrete. Since
N is discrete by assumption, Proposition 2.1 together with Proposition 2.2 imply
that the group O admits a compact open normal subgroup K. Now according to
Proposition 2.3 the subgroup K is contained in a compact normal subgroup of U1×G2

since K has a cocompact normalizer in U1 ×G2. But G2 has a discrete polycompact
radical, so every compact normal subgroup of U1 ×G2 has a finite projection to the
factor G2. In particular there is a finite index closed subgroup of K that is contained
in U1, and H ∩G1 is open in H.

Proposition 4.2. Let G1, G2 be tdlc groups, and suppose that G2 has property (T)
and G2 has a discrete amenable radical. If H is a closed subgroup of finite covolume
in G, then the conclusion of Proposition 4.1 holds.

Proof. The proof follows the same lines as Proposition 4.1. The subgroup O =
H ∩ (U1 × G2) has finite covolume in U1 × G2, and hence also has property (T).
In particular O is compactly generated. By the same argument as above, we see
that O admits a compact open normal subgroup K, so that p2(K) is a compact
normal subgroup of p2(O). Now since p2(O) has finite covolume in G2, the amenable
radical of p2(O) must be contained in the amenable radical of G2 (by [27, Proposition
4.4] and [26, Proposition 7]; or by the main result of [2]). Since G2 has a discrete
amenable radical, the subgroup p2(K) is therefore contained in a discrete subgroup
of G2. So K has a finite projection to G2, and H ∩G1 is open in H.

Corollary 4.3. Let G1, . . . , Gn be compactly generated tdlc groups with W (Gi) dis-
crete for every i. Let H ≤ G = G1 × . . . × Gn be a closed cocompact subgroup such
that H ∩Gi is discrete in Gi for all i. Then H is discrete.
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Proof. Since the polycompact radical of a finite product is the product of the poly-
compact radicals, every subproduct of G has a discrete polycompact radical, so we
deduce that Ker(pi|H) is open in H for every i according to Proposition 4.1. Therefore∩

i Ker(pi|H) = 1 remains open in H, and hence H is discrete.

Lemma 4.4. Let G = G1 × G2 be a product of tdlc groups and H ≤ G be a closed
subgroup such that H ∩G2 is cocompact in G2. For each compact open subgroup U2

of G2, there is a compact open subgroup U1 of G1 such that for each open subgroup
V1 ≤ U1, the projections p2(H ∩ (V1 × G2)) and p2(H ∩ (U1 × G2)) have the same
orbits on G2/U2.

Proof. For each compact open subgroup W ≤ G1, the intersection H ∩ (W × G2)
contains H∩G2. Thus the number of orbits on G2/U2 of the projection p2(H∩ (W ×
G2)) is bounded above by the number of (H ∩ G2)-orbits, which is finite in view of
the hypothesis that H ∩ G2 is cocompact in G2. Let M be the maximum of the
number of orbits over all possible W , and let U1 ≤ G1 be compact open subgroup
such that p2(H ∩ (U1 × G2)) has exactly M orbits on G2/U2. Then for every open
subgroup V1 ≤ U1, the projection p2(H ∩ (V1 × G2)) has also M orbits on G2/U2.
Since H ∩ (V1×G2) is a subgroup of H ∩ (U1×G2), it follows that p2(H ∩ (V1×G2))
and p2(H ∩ (U1 ×G2)) must have the same orbits on G2/U2.

Proposition 4.5. Let G = G1 ×G2 be a product of compactly generated tdlc groups
and H ≤ G be a closed subgroup. Assume that p1(H) is dense in G1.

(i) If H ∩G2 is cocompact in G2, then for each compact open subgroup U2 of G2,
the projection p1(H ∩ (G1 × U2)) is an open subgroup of G1.

(ii) If there is a compact open subgroup U2 of G2 such that (H ∩G2)U2 = G2, then
p1(H ∩ (G1 × U2)) = G1.

Proof. (i) We fix a compact open subgroup U1 ≤ G1 afforded by Lemma 4.4. Let
also u ∈ U1 and V1 ≤ U1 be any open subgroup of U1. Since p1(H) is dense in G1,
there exists h ∈ H with p1(h) ∈ V1u ⊂ U1. In particular, we have h ∈ H ∩ (U1×G2).
By Lemma 4.4, there exists h′ ∈ H ∩ (V1 × G2) such that h′′ = h′h ∈ G1 × U2. We
have h′′ ∈ H ∩ (G1 × U2) and p1(h

′′) = p1(h
′)p1(h) ∈ V1u. Since V1 was arbitrary,

we infer that the closure of p1(H ∩ (G1 × U2)) contains U1, and is thus open in G1.
But the subgroup U2 being compact, the projection p1(H ∩ (G1 × U2)) is closed, so
we actually deduce that p1(H ∩ (G1 × U2)) is open, as required.

(ii) By hypothesis p1(H) is dense in G1 and by (i), p1(H) is open in G1. Thus
p1(H) = G1. Let now g ∈ G1 and choose h ∈ H with p1(h) = g. Since (H ∩G2)U2 =
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G2, there exists h′ ∈ H∩G2 with h′p2(h) = p2(h
′h) ∈ U2. Hence h′h ∈ H∩(G1×U2).

Since p1(h
′) = 1, we have p1(h

′h) = p1(h) = g.

The following result can be compared with [12, Proposition 2.2], which is con-
cerned with closed cocompact subgroups of a product of two locally quasi-primitive
groups of automorphisms of locally finite trees.

Proposition 4.6. Let G1, . . . , Gn be compactly generated tdlc groups that are quasi
just-non-compact. Let H ≤ G = G1 × . . . × Gn be a closed subgroup, such that
the image of pi : H → Gi is dense for every i; and the image of pΣ : H → GΣ is
non-discrete for every non-empty Σ ⊆ {1, . . . , n}. Assume that at least one of the
following conditions is satisfied:

(1) H is cocompact in G.

(2) H is of finite covolume in G, and G has Kazhdan’s property (T).

Then the following hold:

(i) H contains K1× . . .×Kn for some closed cocompact normal subgroups Ki ▹Gi.
In particular H is cocompact in G.

(ii) For every i and every compact open subgroup U1× . . .×Un ≤ G, the projection
pi(H ∩ (U1 × . . .×Gi × . . .× Un)) is a finite index open subgroup of Gi.

Proof. For every i we write Ki = H ∩Gi. The subgroup Ki is centralized by
∏

j ̸=iGj

and normalized by H. So the normalizer of Ki in G, which is a closed subgroup,
contains the subgroup (

∏
j ̸=i Gj)H, which is dense in G by assumption. Therefore

Ki is normal in G, and hence is either discrete or cocompact in Gi since Gi is quasi
just-non-compact.

We let Π ⊆ {1, . . . , n} be the set of i such that Ki is not discrete, and Σ be the
complement of Π. We have to show that Π = {1, . . . , n} and Σ = ∅. The group
KΠ =

∏
i∈ΠKi is cocompact in GΠ, so the projection pΣ : G → GΣ factors through

a proper map G/KΠ → GΣ. Moreover KΠ is contained in H, so that the quotient
H/KΠ is a closed subgroup of G/KΠ. Since map map G/KΠ → GΣ is proper, it
follows that the projection of H/KΠ to GΣ, which is also the projection of H to GΣ,
has a closed image.

If (1) holds, then we may invoke Proposition 4.1 and deduce that Ker(pj|H) is
open in H for every j /∈ Π. If (2) holds, then we observe that for every i, the amenable
radical of Gi is discrete, since it cannot be cocompact by the hypothesis that Gi is a
non-compact group with property (T). In particular the amenable radical of

∏
i̸=j Gi
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is discrete for all j. Therefore, by Proposition 4.2, the conclusion of Proposition 4.1
also holds in that case, and we deduce again that for every j /∈ Π, the subgroup
Ker(pj|H) is open in H.

It follows that H ∩ GΠ =
∩

j /∈ΠKer(pj|H) is an open subgroup of H. Since
projection H → GΣ has closed image and factors through the discrete group H/H ∩
GΠ, we infer that the projection of H to GΣ has discrete image. In view of the
hypotheses, this implies that Σ is the empty set. Therefore Π = {1, . . . , n}, and the
proof of (i) is complete.

In order to prove (ii), we fix i and write Li = pi(H ∩ (U1 × . . .×Gi × . . .× Un)).
According to (i) we have that H∩

∏
j ̸=iGj is cocompact in

∏
j ̸=i Gj, so we may apply

Proposition 4.5, which says that Li is an open subgroup of Gi. But by (i) again we
also know that Li is cocompact in Gi, and hence Li if a finite index subgroup of
Gi.

Corollary 4.7. Let G1, . . . , Gn be compactly generated, quasi just-non-compact tdlc
groups. Let Γ ≤ G = G1 × . . . × Gn be a cocompact lattice such that pi(Γ) is dense
in Gi for every i = 1, . . . , n and satisfying (Irr3). Then for every Σ ( {1, . . . , n},
the closure of the image of pΣ : Γ → GΣ contains

∏
i∈Σ G

(∞)
i .

Proof. First note that the condition (Irr3) implies that all factors Gi are non-
discrete. Fix Σ ( {1, . . . , n}, and write H = pΣ(Γ). Note that there is nothing
to prove if Σ is a singleton, so we assume that Σ has cardinality at least two. The
subgroup H is closed and cocompact in GΣ, and has a dense projection on each Gi

for i ∈ Σ. Since Γ satisfies (Irr3), Proposition 4.6 can be applied to the group H
inside GΣ. So we deduce that H contains

∏
i∈Σ Ki for some closed cocompact nor-

mal subgroups Ki ≤ Gi. By Proposition 2.9 we must have G
(∞)
i ≤ Ki, whence the

statement.

We end this paragraph with an application to commensurators of lattices. Recall
that an irreducible lattice Γ in a semi-simple Lie group G with trivial center and no
compact factor has a commensurator CommG(Γ) that is either discrete or dense in
G, and CommG(Γ) is dense if and only if Γ is an arithmetic lattice [37, Theorem
IX.B]. The following statement shows that a similar “discrete or dense” dichotomy
holds in the setting of products of quasi just-non-compact groups.

Corollary 4.8. Let G1, . . . , Gn be compactly generated, quasi just-non-compact tdlc
groups, and G = G1×. . .×Gn. Assume that at least n−1 factors satisfy Gi = G∞

i . Let
Γ ≤ G be a lattice such that pi(Γ) is dense in Gi for every i = 1, . . . , n and satisfying
(Irr3). Assume also that Γ is cocompact, or that G has Kazhdan’s property (T).
Then CommG(Γ) is either discrete or dense in G.
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Proof. We let H be the closure of CommG(Γ) in G. We have to show that either
H is discrete or H = G. Assume that H is not discrete. Then we may apply
Proposition 4.6, and we deduce that H contains K1 × . . . × Kn for some closed
cocompact normal subgroups Ki ▹Gi. That Gi = G∞

i is equivalent to saying that Gi

has no proper cocompact closed normal subgroup, so it follows that H contains Gi

for all but possibly one factor. But since H is a closed subgroup of G and H has a
dense projection to this remaining factor, we deduce that H = G as required.

4.2 Relations between the irreducibility conditions

Lemma 4.9. Let G1, . . . , Gn be locally compact groups that are all non-compact. For
a lattice Γ ≤ G = G1 × . . .×Gn, we have (Irr2) ⇒ (Irr3), (Irr2) ⇒ (Irr0), and
(Irr4) ⇒ (Irr0).

Proof. If (Irr3) fails, there exists a partition Σ ∪ Π = {1, . . . , n} with Π,Σ ̸= ∅,
such that pΣ(Γ) is discrete in GΣ. Since pΣ(Γ) is also a lattice in GΣ, it follows
that pΣ maps Γ onto a lattice in GΣ. It then follows from [42, Theorem I.1.13] that
Ker(pΣ|Γ) = Γ ∩ GΠ is a lattice in GΠ, which is non-compact by assumption. So
Γ ∩GΠ is non-trivial, which contradicts (Irr2).

If (Irr0) fails, i.e. if (GΠ ∩ Γ)(GΣ ∩ Γ) is of finite index in Γ for some partition
Π ∪ Σ = {1, . . . , n} with Π,Σ ̸= ∅, then arguing as above we see that GΠ ∩ Γ is a
lattice in GΠ, and obtain again a contradiction with (Irr2).

If (Irr0) fails, then there exists a partition Π∪Σ = {1, . . . , n} with Π,Σ ̸= ∅ such
that the direct product Γ1 = (GΠ ∩ Γ)(GΣ ∩ Γ) is of finite index in Γ. In particular
Γ1 is a lattice in G = GΠ ×GΣ. It follows that GΠ ∩ Γ is a lattice in GΠ and GΣ ∩ Γ
is a lattice in GΣ. Thus both factors in the direct product decomposition of Γ1 are
non-trivial, so that (Irr4) fails.

Lemma 4.10. Let G1, . . . , Gn be locally compact groups, and Γ ≤ G = G1× . . .×Gn

a discrete subgroup. Let Σ ∪ Π = {1, . . . , n} be a partition.

(i) Assume that QZ(Gi) = 1 for every i ∈ Π. If pΠ : Γ → GΠ has dense image,
then Γ ∩ GΠ is trivial. In particular if we have QZ(Gi) = 1 for every i, then
(Irr1) ⇒ (Irr2).

(ii) Assume that Gi is monolithic for all i ∈ Π, with QZ(Mon(Gi)) = {1}. If the
closure of the image of pΠ : Γ → GΠ contains G+

Π =
∏

i∈Π Mon(Gi), then Γ∩GΠ

is trivial. In particular, if Gi is monolithic with QZ(Mon(Gi)) = {1} for all i,
then (Irr1′) ⇒ (Irr2).
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Proof. (i) The subgroup Γ ∩ GΠ is normalized by Γ, and centralized by GΣ. Since
the subgroup GΣΓ is dense in G by our assumption on the projection of Γ on GΠ,
it follows that Γ ∩ GΠ is a discrete normal subgroup of G. Therefore it lies in the
quasi-center QZ(GΠ). Notice that the quasi-center of a product group is the product
of their quasi-centers (see [20, Lemma 5.5]). So QZ(GΠ) is trivial, and so is Γ ∩GΠ.

(ii) Let H = pΠ(Γ). We have H ≥ G+
Π by hypothesis. The group N = Γ ∩ GΠ is a

discrete subgroup of H normalized by Γ, hence by pΠ(Γ). Thus it is normal in H,
hence contained in QZ(H). Again G+

Π has trivial quasi-center since all Mon(Gi) have
this property for i ∈ Π, so

N ∩G+
Π ≤ QZ(H) ∩G+

Π ≤ QZ(G+
Π) = {1}

since H ≥ G+
Π. Thus N and G+

Π are normal subgroups of H with a trivial intersection,
hence they commute. On the other hand we have CGΠ

(G+
Π) =

∏
i∈Π CGi

(Mon(Gi)).
Observe that CGi

(Mon(Gi)) must be trivial, since otherwise Mon(Gi) would be
abelian, and hence equal to its quasi-center, which contradicts the hypothesis that
QZ(Mon(Gi)) = {1}. We deduce that N is trivial, which is the required conclu-
sion.

Proposition 4.11. Let G1, . . . , Gn be compactly generated tdlc groups, and Γ ≤ G =
G1 × . . . × Gn a cocompact lattice. Let Σ ∪ Π = {1, . . . , n} be a partition such that
W (Gi) is discrete for every i ∈ Π and such that pΣ : Γ → GΣ has discrete image.
Then pΠ(Γ) is discrete and (GΠ ∩ Γ)(GΣ ∩ Γ) has finite index in Γ.

In particular if W (Gi) is discrete for every i and Γ is a cocompact lattice, then
(Irr0) ⇒ (Irr3).

Proof. Since pΣ(Γ) is cocompact in GΣ, it follows that pΣ maps Γ onto a cocompact
lattice in GΣ. It then follows from [42, Theorem I.1.13] that Ker(pΣ|Γ) = GΠ∩Γ is a
cocompact lattice in GΠ. Notice that GΠ∩Γ is a discrete subgroup of GΠ normalized
by H = pΠ(Γ). Since having a discrete polycompact radical is stable under taking
finite direct products, from Corollary 2.5 we infer that H is discrete. In particular
pΠ(Γ) is discrete. Using again [42, Theorem I.1.13] it now follows Ker(pΠ|Γ) = GΣ∩Γ
is a cocompact lattice in GΣ. Thus Γ1 = (GΠ ∩ Γ)(GΣ ∩ Γ) is a cocompact lattice in
G = GΠ ×GΣ. The index |Γ : Γ1| is thus finite.

Remark 4.12. In Proposition 4.11 the assumption that Γ is cocompact in G can
be replaced by the assumptions that Γ is finitely generated and all groups Gi have
discrete amenable radical, by invoking [20, Corollary 5.4] instead of Corollary 2.5.
In particular it is for instance enough that all groups Gi are quasi just-non-compact
with property (T).
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Corollary 4.13. Let G1, . . . , Gn be compactly generated tdlc groups with discrete
polycompact radical, and Γ ≤ G = G1 × . . . × Gn be a cocompact lattice such that
pi : Γ → Gi has dense image for every i = 1, . . . , n.

Then there is a partition Π1 ∪ · · · ∪ Πℓ of the set {1, . . . , n} such that for all
j = 1, . . . , ℓ, the projection ΓΠj

= pΠj
(Γ) ≤ GΠj

is a cocompact lattice in GΠj

satisfying (Irr3) and (Irr0), and Γ is contained as a finite index subgroup of the
product

∏ℓ
j=1 ΓΠj

.

Proof. By Proposition 4.11, for every partition Π ∪ Σ of the set {1, . . . , n}, if the
projection pΠ(Γ) is discrete, then pΣ(Γ) is discrete as well. Using this and a straight-
forward induction, we deduce that there is a partition Π1∪· · ·∪Πℓ of {1, . . . , n} such
that pΠi

(Γ) is discrete, and pΣi
(Γ) is non-discrete for all i, and all Σi ( Πi. Now, for

all i, by construction, the projection pΠi
(Γ) is a lattice in GΠi

that satisfies (Irr3)
(and hence also (Irr0)). It is clear that Γ is contained in

∏ℓ
i=1 pΠi

(Γ). Since the
latter is a lattice in G and since Γ is also a lattice, it follows that the index of Γ in∏ℓ

i=1 pΠi
(Γ) is finite.

Remark 4.14. As before, Corollary 4.13 is also valid for non-uniform lattices provided
all groups Gi are quasi just-non-compact with property (T). The small modifications
required in the proof are indicated in Remark 4.12.

We are now ready to complete the proof of Theorem H

Proof of Theorem H. We assume henceforth that G1, . . . , Gn are non-discrete com-
pactly generated quasi just-non-compact groups, and Γ ≤ G = G1 × . . . × Gn is
a cocompact lattice such that pi : Γ → Gi has dense image for every i = 1, . . . , n.
Recall that by Proposition 2.9 for all i we have that QZ(Gi) is discrete in Gi, G

(∞)
i is

a non-discrete cocompact subgroup of Gi and every normal subgroup of Gi is either
contained in QZ(Gi) or contains G

(∞)
i .

(Irr2) ⇒ (Irr0) and (Irr4) ⇒ (Irr0) follow from Lemma 4.9.

(Irr0) ⇒ (Irr3) is consequence of Proposition 4.11 since we have W (Gi) ≤ QZ(Gi)
for all i.

(Irr3) ⇒ (Irr1′) follows from Corollary 4.7.
So in order to complete the proof of statement (i) of Theorem H, we need to show

(Irr1′) ⇒ (Irr0). If (Irr0) fails then there is a partition Π ∪ Σ = {1, . . . , n} with
Π,Σ ̸= ∅ such that (GΠ ∩Γ)(GΣ ∩Γ) has finite index in Γ. In particular pΣ(GΣ ∩Γ)
is a discrete subgroup which has finite index in pΣ(Γ), and it follows that pΣ(Γ) is
discrete. Therefore the closure of pΣ(Γ) cannot contain

∏
i∈Σ G

(∞)
i since the latter is

non-discrete, so (Irr1′) also fails.
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We now make the additional assumption that QZ(Gi) = 1 for all i, i.e. that
each factor Gi is just-non-compact. In particular, Gi is monolithic with a non-
discrete cocompact monolith by Proposition 2.7. The monolith Mon(Gi) is compactly
generated (because it is cocompact), non-discrete and characteristically simple. Thus
it has a trivial quasi-center and trivial polycompact radical by Proposition 2.6. We
may therefore apply Lemma 4.10(ii), which shows that (Irr1′) ⇒ (Irr2). This
completes the proof of statement (ii).

Finally in order to have (iii), it remains to prove the implication (Irr2) ⇒ (Irr4)
under the extra assumption that all factors Gi are hereditarily just-non-compact.
Assume that (Irr4) fails and let Λ ≤ Γ be a finite index subgroup of Γ such that
Λ = A × B with A,B non-trivial. Let Hi = pi(Λ) for all i. The index of Hi in
Gi is bounded above by [Γ : Λ], and is thus finite. In particular Hi is hereditarily
just-non-compact by assumption. For each i, the closures pi(A) and pi(B) are closed
normal subgroup of Hi that centralizer each other. If they are both non-trivial, then
they both contain the monolith of Hi, which must then be abelian. This contradicts
Proposition 2.7(ii). Thus for each i, either pi(A) = {1} or pi(B) = {1}. It follows
that (Irr2) fails.

Proof of Corollary I. Consider the partition Π1 ∪ · · · ∪ Πℓ given by Corollary 4.13.
If ℓ > 1 then one block Πj must have cardinality one. If i is the unique element of
Πj, then the projection pi(Γ) is both discrete and dense in the non-discrete group
Gi, which is absurd. So ℓ = 1, and Γ satisfies (Irr3). By Theorem H it also satisfies
(Irr0) and (Irr1′), and we are done.

We present two supplements to Theorem H in case of groups with trivial amenable
radical.

The first one relates condition (Irr2) to residual finiteness of the lattice, relying
on [20]. It requires the ambient group to have a trivial amenable radical.

Corollary 4.15. Let G1, . . . , Gn be non-discrete, compactly generated, quasi just-
non-compact, tdlc groups with trivial amenable radical. Let Γ ≤ G = G1 × . . .×Gn

be a cocompact lattice such that pi : Γ → Gi has dense image for every i = 1, . . . , n.
If n ≥ 4, assume in addition that Γ satisfies (Irr0). If Γ is residually finite, then it
satisfies (Irr2).

Proof. By [20, Theorem 5.13], the hypothesis that Γ is residually finite implies that
QZ(G) = {1}. Therefore QZ(Gi) = {1} for all i, so that Gi is just-non-compact. It
then follows from Theorem H and Corollary I that (Irr2) holds.

We emphasize that a lattice can satisfy (Irr2) without being residually finite:
this is illustrate by the Burger–Mozes simple lattices constructed in [11].

32



The second result enumerates other properties that are formally equivalent to
(Irr2). It uses in an essential way the Normal Subgroup Theorem due to Bader–
Shalom [4]. We recall that a group Γ is called just-infinite if Γ is infinite and every
non-trivial normal subgroup of Γ is of finite index.

Corollary 4.16. Let G1, . . . , Gn be non-discrete, compactly generated, quasi just-
non-compact, tdlc groups. Let Γ ≤ G = G1 × . . . × Gn be a cocompact lattice such
that pi : Γ → Gi has dense image for every i = 1, . . . , n. If n ≥ 4, assume in addition
that Γ satisfies (Irr0). Consider the following conditions.

(i) Γ satisfies (Irr2).

(ii) QZ(G) = {1}.

(iii) Gi is just-non-compact for all i.

(iv) Γ is just-infinite.

Then we have (ii) ⇔ (iii) ⇒ (i) ⇐ (iv).
If in addition Gi has a trivial locally elliptic radical for all i = 1, . . . , n, then

(i), (ii), (iii), (iv) are all equivalent.

Proof. Assume that QZ(G) = {1}. Then QZ(Gi) = {1} for all i, so that Gi is
just-non-compact by Proposition 2.9, so (ii) ⇒ (iii).

Conversely, if Gi is just-non-compact for all i, then QZ(Gi) = {1} by Proposi-
tion 2.7, hence QZ(G) = {1} by [20, Lemma 5.5], so (iii) ⇒ (ii).

If Gi is just-non-compact for all i, then (Irr2) holds by Theorem H and Corol-
lary I. Thus (iii) ⇒ (i).

Assume that Γ does not satisfy (Irr2), then there exists i such that pi : Γ → Gi

has a non-trivial kernel. Since the projection pi(Γ) is dense in Gi, it is an infinite
group. Hence we have found a non-trivial normal subgroup of Γ which is of infinite
index. Thus (iv) ⇒ (i).

We know assume in addition that Gi has a trivial locally elliptic radical for all i =
1, . . . , n. We must show that (i) ⇒ (iiii) and (i) ⇒ (iv). We assume henceforth that
(Irr2) holds. Then for all i, the projection of Γ to

∏
j ̸=iGj is injective. Denoting by

H the closure of the projection of Γ to
∏

j ̸=iGj, we see that H is a closed cocompact
subgroup of

∏
j ̸=iGj of finite covolume. Therefore every lattice in H is a lattice

in
∏

j ̸=iGj, and thus has a trivial centralizer by [20, Corollary 5.3]. We may then
invoke [20, Lemma 5.11], which ensures that QZ(Gi) = {1}. Thus (i) ⇒ (iii).

By [4, Theorem 3.7(iv)] and [44, Theorem 0.1], we know that for every normal
subgroup N of Γ, the quotient Γ/N is finite provided Gi/pi(N) is compact for all i.

33



If N is non-trivial and Γ satisfies (Irr2), then Gi is just non-compact (as we have
seen in the previous paragraph) and pi(N) is a non-trivial closed normal subgroup,
so the quotient Gi/pi(N) is indeed compact. Thus (i) ⇒ (iv).

5 Covolume bounds

5.1 A Chabauty continuity property of projection maps

Given a locally compact group G and a continuous homomorphism φ : G → Q, the
induced map φ∗ : Sub(G) → Sub(Q) : H 7→ φ(H) need not be continuous. For
example, consider G = R×R and φ : G → R the projection to the first factor. The
sequence Hn = nZ[

√
2] = {n(a + b

√
2, a − b

√
2) : a, b ∈ Z} Chabauty converges to

the trivial subgroup of G, but φ(Hn) is dense in R for all n. However, the map φ∗ is
always semi-continuous, in the sense of the first assertion of the following proposition.
Crucial for our purposes is the fact that the map φ∗ is actually continuous under an
assumption of (r, U)-cocompactness:

Proposition 5.1. Let G and Q be locally compact groups and φ : G → Q be a
continuous homomorphism. Let also (Hk) be a net of closed subgroups of G that
Chabauty converges to H ≤ G.

(i) Any accumulation point of the net (φ(Hk)) in the Chabauty space Sub(Q)
contains φ(H).

(ii) Assume in addition that G is compactly generated tdlc and that (Hk) is (r, U)-
cocompact for some r, U and all k. Then (φ(Hk)) Chabauty converges to φ(H).

Proof. Assertion (i) is an easy verification, and we leave the details to the reader.

For (ii), let J ≤ Q be an accumulation point of the net (φ(Hk)) and let (φ(Hk′)) be a
subnet converging to J . Let q ∈ J and let V ≤ Q be any compact open subgroup. For
all sufficiently large k, the intersection qV ∩ φ(Hk′) is non-empty. Thus there exists
hk′ ∈ Hk′ with φ(hk′) ∈ qV . Since O = φ−1(V ) is an open subgroup of G, it follows
from Lemma 3.4 that Hk ∩O is (r, U ∩O)-cocompact in O for all k. By Lemma 3.3,
there exists a compact subset L ⊂ O such that L(Hk∩O) = O for all k. In particular
gL(Hk′ ∩O) = hk′O for all k, where g ∈ G is a fixed element with φ(g) ∈ qV . Hence,
for all k, we may find yk′ ∈ Hk′ ∩ O such that hk′yk′ ∈ gL. Since gL is compact,
we may assume after a further extraction that (hk′yk′)k converges to some limit h,
which must belong to H = limk Hk. We deduce that φ(h) = limk φ(hk′yk′), which is
contained in qV since φ(hk′yk′) ∈ qV φ(O) = qV for all k.
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Since V was an arbitrary compact open subgroup of Q, we infer that q ∈ φ(H).
Hence J ≤ φ(H). By (i) we have J = φ(H). The assertion follows.

5.2 On the set of (r, U)-cocompact lattices with dense projec-
tions

Theorem 5.2. Let G1, . . . , Gn be non-discrete compactly generated quasi just-non-
compact tdlc groups with n ≥ 2, and let U ≤ G = G1 × · · · ×Gn be a compact open
subgroup. For every r > 0, the set Lr,U is discrete (r, U)-cocompact subgroups Γ ≤ G
with pi(Γ) dense in Gi for all i, is Chabauty closed.

We proceed in several steps. The first one is to show that the subset Lirr
r,U ⊂ Lr,U

consisting of those Γ ∈ Lr,U satisfying also (Irr3), is Chabauty closed. This will be
achieved in Proposition 5.7 below.

We first record some auxiliary results of independent interest. The first is a slight
strengthening of Proposition 7.4 in [31].

Proposition 5.3. Let G be a compactly generated locally compact group with discrete
polycompact radical W (G). Let Γ be a cocompact lattice in G, and U a relatively
compact symmetric open neighbourhood of 1 such that Γ ∩ U = W (G) ∩ U = {1}.
Then Γ admits a Chabauty neighbourhood consisting of cocompact lattices Λ such that
Λ ∩ U = {1}.

Proof. First note that, since Γ and W (G) are both discrete, there does exist a rela-
tively compact symmetric open neighbourhood U of 1 such that Γ∩U = W (G)∩U =
{1}.

The arguments from [31, Proposition 7.4] show in full generality that if Λ is a
lattice that is in a sufficiently small Chabauty neighbourhood of Γ, then Λ ∩ U is a
compact subgroup of Γ whose normalizer in G is cocompact. By Proposition 2.3, we
have Λ ∩ U ≤ W (G), so that Λ ∩ U ≤ W (G) ∩ U = {1}.

Corollary 5.4. Let G be a compactly generated tdlc group with discrete polycompact
radical. For every compact open subgroup U ≤ G all r ≥ 1, the set of (r, U)-cocompact
discrete subgroups of G is Chabauty open.

Proof. Immediate from Lemma 3.2 and Proposition 5.3.

The following basic observation will be useful.
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Lemma 5.5. Let G be a compactly generated tdlc group, r ≥ 1 and U ≤ G be a
compact open subgroup. For every continuous homormorphism φ : G → Q such that
φ(G) is dense in Q, there exists a constant rQ and a compact open subgroup UQ ≤ Q

such that φ(H) ∈ CrQ,UQ
(Q) for all H ∈ Cr,U(G).

Proof. By Lemma 3.3, there exists a finite set Σ ⊂ G such that HΣU = G for all H
in Cr,U(G). This yields Q = φ(H)φ(Σ)φ(U) = φ(H)φ(Σ)φ(U) for all H in Cr,U(G).
Let UQ be a compact open subgroup of Q containing φ(U) (such a subgroup exists
by [13, Lemma 3.1]). By the converse statement in Lemma 3.3, there is a constant
rQ such that φ(H) ∈ CrQ,UQ

(Q) for all H ∈ Cr,U(G).

We emphasize that the (r, U)-cocompact subgroups considered in the following
result are not assumed to have dense projections on each factor.

Corollary 5.6. Let G = G1×· · ·×Gn be product of compactly generated tdlc groups
with discrete polycompact radical. For every compact open subgroup U ≤ G all r ≥ 1,
the set of (r, U)-cocompact closed subgroups satisfying (Irr3) is Chabauty closed.

Proof. Let Σ ( {1, . . . , n} be a non-empty proper subset. Let also (Hk) be a net of
(r, U)-cocompact closed subgroups satisfying (Irr3) and converging to some closed
subgroup H ≤ G. Thus H is (r, U)-cocompact by Lemma 3.2. In particular pΣ(Hk)
and pΣ(H) are all (r′, U ′)-cocompact in GΣ by Lemma 5.5. Assume that pΣ(H)
is discrete, so that pΣ(H) = pΣ(H). By Proposition 5.1, this implies that every
accumulation point of the net pΣ(Hk) is also discrete. In view of Corollary 5.4 applied
to GΣ, we infer that there is a subnet pΣ(Hk′) consisting of discrete subgroups, which
contradicts the hypothesis that Hk satisfies (Irr3) for all k.

Proposition 5.7. Let G1, . . . , Gn be non-discrete compactly generated quasi just-
non-compact tdlc groups with n ≥ 2, and let U = U1× · · ·×Un ≤ G1×· · ·×Gn = G
be a compact open subgroup. For every r > 0, the set Lirr

r,U of discrete (r, U)-cocompact
subgroups Γ ≤ G satisfying (Irr3) and with pi(Γ) dense in Gi for all i, is Chabauty
closed.

Proof. Let (Γk) be a sequence in Lirr
r,U that converges to some closed subgroup H ≤ G.

By Lemma 3.2, the group H is (r, U)-cocompact. By Corollary 5.6, it satisfies (Irr3)
and by Proposition 5.1, the projection pi(H) is dense in Gi for all i. It remains to
show that H is discrete.

Assume that this is not the case. Then H satisfies all the hypothesis of Proposi-
tion 4.6, and it follows that p1(H∩(G1×U2×· · ·×Un)) is a finite index open subgroup
of G1. The sequence (Γk∩(G1×U2×· · ·×Un))k converges to H∩(G1×U2×· · ·×Un).
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Moreover, the restriction of p1 to G1 × U2 × · · · × Un is proper, hence it induces a
Chabauty continuous map Sub(G1 × U2 × · · · × Un) → Sub(G1). It follows that
some finite index open subgroup of G1 is a Chabauty limit of the sequence of lattices(
p1(Γk∩(G1×U2×· · ·×Un))

)
k
. From Theorem F, we deduce that G1 has a compact

open subgroup V that is an infinitely generated pro-p for some prime p.
On the other hand, the intersection Γ1 ∩ (V × G2 × · · · × Gn) is a cocompact

lattice in V × G2 × · · · × Gn (by Lemma 3.4), hence it is finitely generated since
V × G2 × · · · × Gn is compactly generated. Since p1(Γ1) is dense in G1, it follows
that p1(Γ1 ∩ (V × G2 × · · · × Gn)) is dense in V . Thus V is topologically finitely
generated. This is a contradiction.

We are now ready to complete the proof of Theorem 5.2.

Proof of Theorem 5.2. For every partition P = Π1 ∪ · · · ∪ Πℓ of the set {1, . . . , n},
we denote by Lr,U(P) the set of those Γ ∈ Lr,U such that for every i, the projection
pΠi

(Γ) is discrete, and for every non-empty Σi ( Πi, the projection pΣi
(Γ) is non-

discrete.
We claim that the set Lr,U(P) is Chabauty closed. Indeed, let (Γk) be a sequence

in Lr,U(P) that converges to some closed subgroup H ≤ G. By Lemma 3.2, the group
H is (r, U)-cocompact and by Proposition 5.1, the projection pi(H) is dense in Gi for
all i. By Lemma 5.5, for every i, the projection pΠi

(Γk) is (ri, UΠi
)-cocompact in GΠi

.
By Proposition 5.1 and Proposition 5.7, it follows that pΠi

(H) is discrete. Given a
non-empty Σi ( Πi, the projection pΣi

(Γk) is non-discrete for all k, so the same holds
for pΣi

(H) by Corollary 5.4. Since H is contained in pΠ1(H)×· · ·×pΠℓ
(H), it follows

that H is discrete, and hence that H belongs to Lr,U(P).
We conclude the proof by observing that the set Lr,U is the union of all sets

Lr,U(P) where P runs over the finite set of all partitions of {1, . . . , n}: indeed, that
follows from Corollary 4.13. Hence Lr,U is a finite union of closed sets, hence it is
closed.

5.3 A first Wang finiteness theorem

The goal of this section is to prove Theorem A. We need the following observation,
whose proof is inspired by Proposition 2.1 in [12] and Theorem 9.3 in [31].

Proposition 5.8. Let G be a compactly generated tdlc group and Γ ≤ G be a lattice.
Let L be a set of discrete subgroups of G containing Γ. Assume that the following
conditions hold:

(1) Γ is finitely generated.
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(2) For every finite index subgroup Σ ≤ Γ, the normalizer NG(Σ) is discrete.

(3) L is Chabauty closed.

(4) For every Λ ∈ L, there is an identity neighbourhood U in G and a neighbourhood
Ω of Λ in Sub(G) such that H ∩ U = {1} for all H ∈ L ∩ Ω.

Then L is finite.

Proof. Suppose for a contradiction that the set in question is infinite. In view of (3),
this implies the existence of a sequence (Λn)n of pairwise distinct discrete subgroups
of G all containing Γ, that Chabauty converges to some Λ ∈ L. By (4), we may find a
relatively compact symmetric open neighbourhood U of 1 such that Λn ∩U = 1. We
now argue as in the proof of Theorem 9.3 from [31]: the existence of U implies that
there is a lower bound for the covolume of Λn in G, and hence an upper bound for the
index of Γ in Λn. Hence in order to derive a contradiction we may assume that this
index is constant. It follows that there exists a finite index normal subgroup Σn in Λn

contained in Γ and whose index does not depend on n. Since a finitely generated has
finitely many subgroups of any given index, we may extract a further subsequence
so that Σn = Σ becomes independent of n. Condition (2) implies that Σ is of finite
index in its normalizer. In particular there are only finitely many subgroups between
Σ and its normalizer, which contradicts the fact that infinitely many Λn normalize
Σ.

In the proof of Theorem A in the case of Kazhdan groups we will appeal to the
following result.

Proposition 5.9. Let G1, . . . , Gn be non-discrete, compactly generated, quasi just-
non-compact tdlc groups with Kazhdan’s property (T), with n > 1. Let Γ ≤ G =
G1 × · · · ×Gn be a non-uniform lattice such that the projection pi(Γ) is dense in Gi

for all i. Then the set of discrete subgroups of G containing Γ is Chabauty closed.

Proof. Let (Γk) a sequence of discrete subgroups of G with Γ ≤ Γk and such that
(Γk) converges to a closed subgroup H in Sub(G). Clearly Γ ≤ H, and hence pi(H)
is dense in Gi for all i. We want to show that H is discrete.

Assume first that Γ satisfies (Irr3). Then H also does. Assume for a contra-
diction that H is not discrete. Then H is a non-discrete closed subgroup of finite
covolume in G, and G has property (T), so by Proposition 4.6(i) the group H is
cocompact in G. It then follows from Lemma 3.2 that Γk is cocompact in G for all
sufficiently large k, and hence that Γ is cocompact. This is a contradiction. So we
deduce that the group H is discrete in this case.
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To deal with the general case, the conclusion of Corollary 4.13 (which holds
here since G has Kazhdan’s property (T); see Remark 4.14) yields a partition Π1 ∪
· · · ∪ Πℓ of {1, . . . , n} such that pΠi

(Γ) is a lattice with (Irr3) in GΠi
for all i. By

Proposition 5.1(i), the projection pΠi
(H) is contained in every accumulation point

of the sequence pΠi
(Γk). Since Γ is of finite index in Γk and since pΠi

(Γ) is discrete,
it follows that pΠi

(Γk) = pΠi
(Γk) is discrete. The first part of the proof then implies

that pΠi
(H) = pΠi

(H) is discrete for all i. Since H is contained in
∏ℓ

i=1 pΠi
(H), we

deduce that H is discrete, as required.

Proof of Theorem A. Let L be the collection of discrete subgroups of G containing
Γ.

Consider first the case where Γ is cocompact. Let U ≤ G be a compact subgroup
and set r = |Γ\G/U |. Notice that every discrete subgroup Λ ≤ G containing Γ has
dense projection to Gi for all i. It follows from Theorem 5.2 that the set of all those
Λ is Chabauty closed. Thus Condition (3) of Proposition 5.8 is verified. Since Γ is
cocompact and G is compactly generated, (1) holds as well. Condition (2) follows
from Corollary 2.5. Finally (4) is satisfied in view of Proposition 5.3. Therefore L is
finite by Proposition 5.8.

We now assume that Γ is not cocompact, and that G has Kazhdan’s property
(T). Under these assumptions, the fact that L is closed in Sub(G) has been proved in
Proposition 5.9. Since G has property (T), it follows that Γ is finitely generated, and
Condition (2) of Proposition 5.8 follows from [20, Corollary 5.4] since G has discrete
amenable radical. Finally (4) is also satisfied in view of Theorem G. Therefore by
applying Proposition 5.8 again, it follows that L is finite.

5.4 A uniform discreteness statement for irreducible lattices
in products

The following is a reformulation of Theorem B.

Theorem 5.10. Let G1, . . . , Gn be non-discrete compactly generated quasi just-non-
compact tdlc groups with n ≥ 2, let U ≤ G = G1×· · ·×Gn be a compact open subgroup
and let r ≥ 1. Let also Lr,U be the set of discrete (r, U)-cocompact subgroups Γ ≤ G
with pi(Γ) dense in Gi for all i. Then there exists an identity neighbourhood V such
that V ∩ Γ = {1} for every Γ ∈ Lr,U(G). Moreover, the set of covolumes covol(Γ),
for Γ ∈ Lr,U(G), is finite.

Proof. By Theorem 5.2, the set Lr,U ⊂ Sub(G) is Chabauty closed, hence compact.
Moreover, by Proposition 5.3, for each Γ ∈ Lr,U , there is a identity neighbourhood
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V (Γ) in G and an open Chabauty neighbourhood X (Γ) of Γ such that Λ∩V (Γ) = {1}
for all Λ ∈ X (Γ). Hence the collection {X (Γ)}Γ forms an open cover of the compact
set Lr,U . Let X (Γ1) ∪ · · · ∪ X (Γℓ) be a finite subcover. Then V =

∩ℓ
i=1 V (Γi) is an

identity neighbourhood in G such that V ∩ Γ = {1} for every Γ ∈ Lr,U .
The finiteness of the set of covolumes follows directly from the existence of V

together with Serre’s covolume formula (see [9, Proposition 1.4.2(b)]).

The neighbourhood V in Theorem 5.10 a priori depends on r. As mentioned in
the introduction, we do not know the answer to the following question (even in the
case where all the factors are topologically simple):

Question 5.1. Let G1, . . . , Gn be non-discrete compactly generated quasi just-non-
compact tdlc groups, n ≥ 2. Does there exist an identity neighbourhood V in
G = G1 × · · · ×Gn such that for every cocompact lattice Γ ≤ G with pi(Γ) dense in
Gi for all i, we have V ∩ Γ = {1} ?

5.5 A second Wang finiteness theorem in compactly presented
groups

Recall that a locally compact group G is compactly presented if G admits a com-
pact generating subset S and a presentation with set of generators S and relators
of bounded word length. When G is a compactly generated tdlc group, G is com-
pactly presented if and only if G acts properly and cocompactly on a coarsely simply
connected locally finite graph (see [23, Corollary 8.A.9]).

We will invoke the following result, extracted from the work of Gelander–Levit
[31].

Theorem 5.11 (Gelander–Levit). Let n ≥ 1 and G1, . . . , Gn be compactly presented
tdlc groups with trivial polycompact radical. For each i let Xi be a connected locally
finite graph on which Gi acts properly and cocompactly, and let c > 0 such that each
Rips 2-complex Rips2c(Xi) is simply connected. Let Ai be the automorphism group
of Rips2c(Xi), and write A = A1 × . . . × An. Let also Γ ≤ G = G1 × . . . × Gn be a
cocompact lattice.

(i) Γ has a neighbourhood in Sub(G) consisting of A-conjugates of Γ.

(ii) If moreover pi(Γ) is dense in Gi for all i, then Γ has a neighbourhood in Sub(G)
consisting of NA(G)-conjugates of Γ.
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Proof. This statement is a consequence of [31, Corollary 4.3-4.4] (and their proofs)
together with [31, Corollary 7.1.2]. Note that [31, Corollary 4.4] is stated there in the
case of two factors, but the same proofs works for n ≥ 2 factors with the assumption
that the projection of Γ on each individual factor is dense.

Theorem 5.12. Let n ≥ 2, and G1, . . . , Gn be (non-discrete) compactly presented
quasi just-non-compact tdlc groups with trivial polycompact radical. Let U = U1 ×
· · · × Un ≤ G = G1 × · · · × Gn be a compact open subgroup. For each i let Xi be
a connected locally finite graph on which Gi acts properly and cocompactly, and let
c > 0 such that each Rips 2-complex Rips2c(Xi) is simply connected. Let Ai be the
normalizer of Gi in the isometry group of Rips2c(Xi), and A = A1 × . . .×An. Then
for every r ≥ 1, the the set Lr,U of (r, U)-cocompact lattices Γ ≤ G with pi(Γ) dense
in Gi for all i, is covered by finitely many NA(G)-orbits.

Proof. By Theorem 5.2, the set Lr,U is Chabauty closed, hence compact. By Theo-
rem 5.11(ii), every Γ ∈ Lr,U has a Chabauty neighbourhood that consists of conju-
gates of Γ under NA(G). The result follows by extracting a finite subcover.

We finish by observing that Theorem C from the introduction follows from the
more precise Theorem 5.12.

6 Automorphism groups of graphs and local action
In this section we apply the results of the previous sections to lattices in products
of automorphism groups of graphs with certain local actions. Although the main
example to keep in mind is that of trees, many of our results apply to arbitrary
connected locally finite graphs.

6.1 Graph-restrictive permutation groups and restrictive ac-
tions

We briefly recall some notation. Let X be a connected graph and let G ≤ Aut(X).
Given a vertex x ∈ V X, we denote by X(x) the one-ball around x, and by G

X(x)
x the

permutation group induced by the action of Gx on X(x). We call GX(x)
x the local

action of G at x. Given a permutation group L, we say that the G-action on X is
locally L if GX(x)

x is permutation isomorphic to L for every vertex x of X.
Following Potočnik–Spiga–Verret [39], we will use the following terminology.
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Definition 6.1. A finite permutation group L is graph-restrictive if there exists
a constant cL such that, for every connected graph X and every vertex-transitive
discrete subgroup G ≤ Aut(X) that is locally L, we have G[cL]

x = 1 for every x ∈ V X.

Our formulation of that definition actually differs from that in [39], but both
definitions are equivalent. A conjecture of R. Weiss [57, Conjecture 3.12] asserts that
finite primitive groups are graph-restrictive; C. Praeger [40, Problem 7] conjectures
that quasi-primitive groups are graph-restrictive, while Potočnik–Spiga–Verret [39]
conjecture that a finite transitive permutation group is graph-restrictive if and only
if it is semiprimitive, and prove the “only if” implication [39] (see Section 1.2 for the
definition of a semiprimitive permutation group). We should note that a semiregular
permutation group L is obviously graph-restrictive (with constant cL = 1), and
among intransitive permutation groups, semiregular is equivalent to graph-restrictive
[47]. Recall that a permutation group is semiregular if all point stabilizers are
trivial.

An important result, that follows from the work of Trofimov–Weiss, ensures finite
2-transitive groups are all graph-restrictive.

Theorem 6.2 (Trofimov–Weiss [52, Theorem 1.4]). Every finite 2-transitive group
L is graph-restrictive, with constant cL ≤ 6.

We shall now introduce a notion of a graph-restrictive pair of permutation groups.
For a pair (L1, L2) of permutation groups, we say that G ≤ Aut(X) is locally-
(L1, L2) if there exists an edge (x, y) of X such that G

X(x)
x ≃ L1 and G

X(y)
y ≃ L2.

Definition 6.3. A pair of permutation groups (L1, L2) is graph-restrictive if there
exists a constant cL1,L2 = c such that, for every connected graph X and every locally
(L1, L2) discrete subgroup G ≤ Aut(X) acting on X with two orbits of vertices, we
have G

[c]
x = 1 for every x ∈ V X.

Remark 6.4. We note that “L is graph-restrictive” is not the same as “(L,L) is
graph-restrictive”. We also point out that the notion defined in Definition 6.3 does
not coincide with the one from [38, Definition 1.1], as we only require the uniform
bound for groups of automorphisms with two orbits of vertices. Our definition turns
out to be more appropriate for our purpose, and will provide a more robust statement
hereafter.

We record an elementary observation that relates the previous notions with the
other considerations of this paper.

Lemma 6.5. Let X be a connected locally finite graph.
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(i) If L is a graph-restrictive permutation group, then the collection of vertex-
transitive discrete subgroups of Aut(X) that are locally L is Chabauty-closed.

(ii) Similarly if the pair (L1, L2) is graph-restrictive, then the collection of discrete
subgroups of Aut(X) that are locally (L1, L2) and with two orbits of vertices, is
Chabauty-closed.

Proof. The collection of vertex-transitive closed subgroups of Aut(X) is Chabauty
closed by Lemma 3.2. Among the vertex-transitive closed subgroups, the condi-
tion of being locally L is Chabauty closed as well, since intersecting with a fixed
compact open subgroup of Aut(X) (namely a vertex-stabilizer) is a continuous map
on Sub(Aut(X)). If (Λk) is a sequence of locally L vertex-transitive discrete sub-
groups, then the pointwise stabilizer FixΛk

(B(x, cL)) of the cL-ball around a vertex
x is trivial for all k, so that any accumulation point of (Λk) in the Chabauty space
Sub(Aut(X))) also has that property, and is thus discrete. This shows the first
statement. The proof of the second statement follows along the same lines.

Finally in the sequel we will use the following terminology.

Definition 6.6. Let G ≤ Aut(X) be a locally transitive group of automorphisms
of X. If G acts transitively on vertices of X, we say that the action of G on X is
restrictive if G is locally L and L is a graph-restrictive permutation group. If G
acts on X with two orbits of vertices, we say that the action of G on X is restrictive
if G is locally (L1, L2) and (L1, L2) is a graph-restrictive pair of permutation groups.

We observe that G ≤ Aut(X) has a restrictive action on X if and only if the
closure of G does; and that among closed subgroups of Aut(X), the property of
having a restrictive action defines a clopen subset in the Chabauty space of Aut(X).

6.2 Automorphism groups of graphs with semiprimitive local
action

A basic observation due to Burger–Mozes [10, Proposition 1.2.1] is that a closed
subgroup of the automorphism group of a connected locally finite graph whose local
action at every vertex is quasi-primitive, must be quasi just-non-compact. That
result can be generalized without much effort to semiprimitive local actions (see also
[50, Chapter II.7]).

Proposition 6.7. Let X be a connected locally finite graph. Let G ≤ Aut(X) be a
closed subgroup that is locally semiprimitive, and let N be a normal subgroup of G.
Then one of the following holds:
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(i) N acts freely on the edges of X;

(ii) N acts transitively on the edges of X;

(iii) There exists a G-invariant bipartition V X = V1 ∪ V2 such that N acts transi-
tively on V2.

In particular G is quasi just-non-compact, and if G is non-discrete then there exists
a compact open subgroup U of G such that G = G(∞)U .

Proof. We follow the arguments from [10, Proposition 1.2.1]. Given a normal sub-
group N of G, for every vertex x ∈ V X, the stabilizer Nx is a normal subgroup
of Gx, and thus its action on the 1-sphere X(x) is transitive or free. Let V1(N) be
the collection of those x ∈ V X such that Nx is transitive on X(x), and notice that
V1(N) is G-invariant. Let V2(N) be the complement of V1(N) in V X. Notice that
V X = V1(N) ∪ V2(N) is a G-invariant partition of the vertex-set V X.

For i = 1, 2, we observe that if two adjacent vertices both belong to Vi(N), then
we must have Vi(N) = V X since G is locally transitive, hence edge-transitive, and
the graph X is connected. If V2(N) = V X then the pointwise fixator in N of an edge
is trivial, and N acts freely on edges, so (i) holds. If V1(N) = V X, the subgroup
N is transitive on the edge-set EX and (ii) holds. The only case that remains to
be analyzed is when V1(N) and V2(N) are both non-empty, and hence form a G-
invariant bipartition of the graph X. In that situation, consider x ∈ V2(N). Then
every neighbour y of x is in V1(N), so that Ny is transitive on X(y). Since X is
connected, it follows that the star {x} ∪ X(x) contains a representative of every
⟨Ny | y ∈ X(x)⟩-orbit of vertices. In particular N acts transitively on V2(N), and we
obtain (iii).

It follows in particular that every closed normal subgroup of G is either discrete
or cocompact, i.e. that G is quasi just-non-compact. Assume finally that G is non-
discrete. Since G is also compactly generated (because it acts edge-transitively on
X), the closed normal subgroup G(∞) afforded by Proposition 2.9 is non-discrete,
and hence falls into case (ii) or (iii). Let U be the setwise stabilizer of an edge if we
are in case (ii), or the stabilizer of a vertex of V2(G

(∞)) if we are in case (ii). Then
we have the equality G = G(∞)U .

6.3 Lattices in products of graphs with semiprimitive local
action

In this section we consider lattices Γ ≤ Aut(X1) × · · · × Aut(Xn) whose action on
each factor is locally semiprimitive. Before going further, we note that we are now
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able to complete the proof of Corollary D from the introduction.

Proof of Corollary D. Indeed, in view of Proposition 6.7 each group Gi is quasi just-
non-compact, and therefore the assertions (A), (B) and (C) of the corollary respec-
tively follow from Theorems A, B and C.

In the rest of this section we consider lattices Γ ≤ Aut(X1) × · · · × Aut(Xn)
in a more general setting than the one of Corollary D, in the sense that we no
longer prescribe in advance the projections of the lattices. This is counterbalanced
by the fact that we impose additional conditions on the actions on one or several of
the factors. In the following statement, this additional assumption is (4). See the
discussion right after the statement concerning the connection between assumptions
(3) and (4).

Theorem 6.8. Let n ≥ 2 and for each i = 1, . . . , n, let Xi be a connected locally
finite graph such that Aut(Xi) has a discrete polycompact radical. For r ≥ 1, let Lr

be the set of discrete subgroups Γ ≤ Aut(X1)× · · · × Aut(Xn) such that:

(1) Γ acts on
∏n

i=1 V Xi with at most r orbits.

(2) Γ satisfies (Irr0).

(3) For all i = 1, . . . , n, the action of Γ on Xi is locally semiprimitive.

(4) The action of Γ on X1 is restrictive.

Then:

(i) There is some c > 0 such that Γ
[c]
x = {1} for every vertex x ∈

∏n
i=1 V Xi and

every Γ ∈ Lr. In particular Lr is Chabauty closed.

(ii) If in addition Aut(Xi) is compactly presented with trivial polycompact radical
for all i, then the elements of Lr fall into finitely many isomorphism classes.

Before giving the proof, we make a few comments:

1) When specified to the case of trees, Theorem 6.8 provides a partial solution to
a conjecture due to Y. Glasner [33, Conjecture 1.5].

2) By definition when Γ acts vertex-transitively on X1, assumption (4) means that
Γ is locally graph-restrictive. As mentioned in §6.1, it is conjectured that this
is always the case when the action is locally semiprimitive (so conjecturally,
assumption (3) automatically implies assumption (4)). This has been confirmed
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for numerous specific classes of local actions, including 2-transitive groups [52],
primitive groups of affine type [56, 46], primitive groups of twisted wreath type
[45], or semiprimitive groups with two distinct minimal normal subgroups [32].

Proof of Theorem 6.8. Let (Γk) be a sequence of elements of Lr that converges to
H. Let us show that H belongs to Lr.

First observe that the assumption implies that each Aut(Xi) acts on Xi with
finitely many orbits of vertices, and is therefore compactly generated since Xi is
connected. Since moreover the full automorphism group Aut(Xi) has a discrete
polycompact radical, Proposition 4.11 ensures that Γk satisfies (Irr3) for all k. So
by Corollary 5.6 the group H also satisfies (Irr3) (and hence (Irr0)), and acts on∏n

i=1 V Xi with at most r orbits.
Proposition 5.1 ensures that H is locally semiprimitive on Xi for all i, and re-

strictive on X1. So it follows from Proposition 6.7 that the group Gi = pi(H) is quasi
just-non-compact for all i, and Gi is non-discrete by (Irr3).

So in oder to show that H belongs to Lr, we have to show that H is discrete. We
argue by contradiction and assume that H is not discrete. Then by Proposition 4.6
we have H ∩Gi ≥ G

(∞)
i . Moreover for all i, Proposition 6.7 provides a compact open

subgroup Ui of Gi such that (H ∩ Gi)Ui = Gi. In view of Proposition 4.5(ii), we
deduce that p1(H ∩ (G1 × U2 × · · · × Un)) = G1. It follows that G1 is the Chabauty
limit of the sequence of cocompact lattices Λk := p1(Γk ∩ (G1 × U2 × · · · × Un)).
We have seen above that the action of G1 = p1(H) on X1 is restrictive, so the same
is true for Λk for k large enough as having a restrictive action is a Chabauty open
condition. But Lemma 6.5 then implies that G1 must be discrete. Therefore we have
reached a contradiction, and hence the subgroup H must be discrete.

We have thus shown that Lr is Chabauty closed, and assertion (i) follows from a
compactness argument using Proposition 5.3, as in the proof of Theorem 5.10.

If in addition all the factors Aut(Xi) are compactly presented with trivial poly-
compact radical, by Theorem5.11(i) every cocompact lattice Γ in Aut(X1) × · · · ×
Aut(Xn) has a Chabauty neighbourhood that consists of cocompact lattices isomor-
phic to Γ. Thus the elements of Lr fall into finitely many isomorphism classes by
the compactness of Lr.

We finally establish a statement analogous to Theorem 6.8, but without any
irreducibility assumption. We shall use the following auxiliary fact.

Lemma 6.9. Let n ≥ 1 and G1, . . . , Gn be non-discrete compactly generated tdlc
groups with discrete polycompact radical. Let also L be a set of cocompact lattices in
G. Suppose that for every non-empty subset Π ⊆ {1, . . . , n}, there exists a compact
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open subgroup VΠ ≤ GΠ such that for all Γ ∈ L, if pΠ(Γ) is discrete and p∆(Γ) is
non-discrete for each non-empty proper subset ∆ ( Π, then pΠ(Γ)∩VΠ = {1}. Then
there exists a compact open subgroup W ≤ G such that Γ ∩W = {1} for all Γ ∈ L.

Proof. We work by induction on n. For n = 1 there is nothing to prove; we assume
henceforth that n > 1.

Let Π ⊆ {1, . . . , n} be non-empty. Set

LΠ = {pΠ(Γ) | Γ ∈ L and pΠ(Γ) is discrete}.

If Π ̸= {1, . . . , n}, then by the induction hypothesis, there exists a compact open
subgroup WΠ ≤ GΠ such that Λ∩WΠ = {1} for all Λ ∈ LΠ. If Π = {1, . . . , n}, then
we set WΠ = VΠ, where VΠ is the compact open subgroup given by hypothesis.

Now, for all i, we set Wi =
∩

Π∋iWΠ ∩Gi. Thus Wi is a compact open subgroup
of Gi, and for every non-empty subset Π ⊆ {1, . . . , n}, we have

∏
i∈ΠWi ≤ WΠ.

Finally, we set W =
∏n

i=1Wi.
Let Γ ∈ L. If for every non-empty proper subset Π ⊂ {1, . . . , n}, the projection

pΠ(Γ) is non-discrete, then we have Γ ∩W{1,...,n} = Γ ∩ V{1,...,n} = {1} by hypothesis,
so that Γ ∩W = {1}. On the other hand, if there exists a non-empty proper subset
Π ⊂ {1, . . . , n} such that the projection ΓΠ = pΠ(Γ) is discrete, then ΓΣ = pΣ(Γ)
is also discrete by by Proposition 4.11. Moreover we have ΓΠ ∩ WΠ = {1} and
ΓΣ∩WΣ = {1}. Since Γ embeds as a subgroup of ΓΠ×ΓΣ, we have Γ∩ (WΠ×WΣ) =
{1}. In particular, we have Γ ∩W = {1}.

Corollary 6.10. Let n ≥ 1 and for each i = 1, . . . , n, let Xi be a connected locally
finite graph such that Aut(Xi) has a discrete polycompact radical. For r > 0, let Lr

be the set of discrete subgroups Γ ≤ Aut(X1)× · · · × Aut(Xn) acting with at most r
orbits on

∏n
i=1 V Xi and whose action on Xi is restrictive and locally semiprimitive

for all i. Then:

(i) There is some c > 0 such that Γ
[c]
x = {1} for every vertex x ∈

∏n
i=1 V Xi and

every Γ ∈ Lr. In particular Lr is Chabauty closed.

(ii) If in addition Aut(Xi) is compactly presented with trivial polycompact radical
for all i, then the elements of Lr fall into finitely many isomorphism classes.

Proof. According to Theorem 6.8(i), the hypotheses of Lemma 6.9 are satisfied by
the family of lattices Lr. Thus by the lemma there is a constant c such that Γ[c]

x = {1}
for some vertex x ∈

∏n
i=1 V Xi. Since every Γ ∈ Lr has at most r orbits of vertices,

it follows from Lemma 3.3 that Γ
[c+r]
x = {1} for every vertex x ∈

∏n
i=1 V Xi. Using

Lemma 3.2 and Proposition 5.1, we deduce that Lr is closed, so that (i) holds.
Assertion (ii) follows from (i) together with Theorem 5.11.
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Proof of Theorem E. Let L be the collection of lattices as in the statement. By
Theorem 6.2, every finite 2-transitive group is graph-restrictive, so Γ has a restrictive
action on each Ti for every Γ ∈ L. Since Aut(Ti) is vertex-transitive, its only compact
normal subgroup is the trivial one. Hence by Corollary 6.10(i), L is Chabauty closed.

To conclude, we note that Aut(Ti) is compactly presented since Ti is simply
connected (see [23, Corollary 8.A.9]). Thus the lattices in L fall into finitely many
conjugacy classes by invoking Theorem 5.11 with Gi = Ai = Aut(Ti) for all i.

A Chabauty deformations of cofinite subgroups in
Kazhdan groups

The following interesting fact follows from results of J. Fell [25] on continuity proper-
ties of induction of unitary representations. An analogous result has been established,
with a similar argument, by S.P. Wang in [55, Theorem 3.10].

Theorem A.1. Let G be a first countable locally compact group with Kazhdan’s
property (T). Then the set of closed subgroups of finite covolume forms an open
subset of the Chabauty space Sub(G).

Proof. Since G has (T), it is compactly generated and thus second countable. This
condition is needed to invoke Fell’s results from [25]. In that paper, the author
introduces a topology on the set S (G) of pairs (H,T ) where H is a closed subgroup
of G and T is an equivalence class of unitary representations of H. It follows from
[25, Lemma 3.3 and Theorem 4.2] that the map (H,T ) → IndG

H(T ) is continuous,
where the target space is endowed with Fell’s topology.

Let (Hn) be a sequence of closed subgroups of G converging to H ∈ Sub(G). For a
closed subgroup J ≤ G, let 1J be the trivial representation of J . By [25, Lemma 3.2],
the sequence (Hn,1Hn) converges to (H,1H) in the space S (G). Therefore, by
Fell’s theorem mentioned above, the sequence IndG

Hn
(1Hn) converges to IndG

H(1H)

in Fell’s topology. In particular IndG
H(1H) is weakly contained in the direct sum⊕

n Ind
G
Hn

(1Hn) (see [8, Proposition F.2.2]).
Assume now that H is of finite covolume and suppose for a contradiction that

the closed subgroups of finite covolume of G do not form a neighbourhood of H.
Then there exists a sequence (Hn) converging to H, such that Hn is not of finite
covolume in G for any n. Since H is of finite covolume, the trivial representation
1G is contained in IndG

H(1H). Since weak containment of unitary representations
is a transitive relation, we deduce from the previous paragraph that 1G is weakly
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contained in
⊕

n Ind
G
Hn

(1Hn). Since G has (T) by hypothesis, the trivial represen-
tation is actually contained in

⊕
n Ind

G
Hn

(1Hn). Hence there exists n such that 1G

is contained in IndG
Hn

(1Hn). By [8, Theorem E.3.1], this implies that Hn is of finite
covolume, a contradiction.

Remark A.2. It should be noted that Theorem A.1 fails without the property (T)
assumption. Indeed as soon as a group G has an infinitely generated lattice Γ ≤ G,
then there does not exist any Chabauty neighbourhood of Γ consisting of subgroups
of finite covolume in G. Indeed we may write Γ as the Chabauty limit of its finitely
generated subgroups, and none of them is a lattice in G (since they are of infinite
index in Γ as Γ is infinitely generated). As a concrete example, one can take the
full automorphism group of a regular tree T , all of whose non-uniform lattices are
infinitely generated, see [7].

We also point out that a locally compact group G is compactly generated if and
only if the set of its closed cocompact subgroups is open in the Chabauty space
Sub(G), see [31, Remark 3.7].

We can now complete the proof of Theorem G, using ideas similar to those of
Gelander–Levit [31, Proposition 7.4].

Proof of Theorem G. Since G is compactly generated, every identity neighbourhood
V contains a compact normal subgroup KV such that G/KV is second countable
(see [34]). Choosing V with V ∩ R(G) = {1} we deduce KV = 1 and G is second
countable.

Let now Γ ≤ G be a lattice, and Ω ⊂ Sub(G) be a neighbourhood of Γ consisting
of closed subgroups of finite covolume, as afforded by Theorem A.1. Let U ⊂ G
be a compact neighbourhood such that U ∩ Γ ∩ R(G) = {1}. By [31, Lemma 7.3],
there exists a neighbourhood ΩU of Γ contained in Ω such that for all H ∈ ΩU , the
intersection H ∩ U is a subgroup that is normalized by some subgroup L ≤ H with
L ∈ Ω.

Notice that the group H ∩ U is compact, and that L is of finite covolume in G.
Therefore (H ∩ U)L is a closed subgroup of finite covolume in G, containing H ∩ U
as a compact normal subgroup. By the main result of [2], it follows that H ∩ U
is contained in the amenable radical R(G). Since U ∩ R(G) = {1}, it follows that
H ∩ U = {1}. Thus ΩU is a neighbourhood of Γ as required.
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