
COMMENSURATED SUBGROUPS IN TREE ALMOST

AUTOMORPHISM GROUPS

ADRIEN LE BOUDEC AND PHILLIP WESOLEK

Abstract. We prove that the almost automorphism groups AAut(Td,k)
admit exactly three commensurability classes of closed commensurated
subgroups. Our proof utilizes an independently interesting characteri-
zation of subgroups of AAut(Td,k) which contain only periodic elements
in terms of the dynamics of the action on the boundary of the tree.

Our results further cover several interesting finitely generated sub-
groups of the almost automorphism groups, including the Thompson
groups F, T , and V . We show in particular that Thompson’s group T
has no commensurated subgroups other than the finite subgroups and
the entire group. As a consequence, we derive several rigidity results for
the possible embeddings of these groups into locally compact groups.
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1. Introduction

The group of almost automorphisms of a locally finite regular tree was first
considred by Y. Neretin in [15]. It is a totally disconnected locally compact
(t.d.l.c. hereafter) second countable group, which is abstractly simple by
work of C. Kapoudjian [11].

We briefly recall the definition of this group and its topology, following the
approach developed by P.-E. Caprace and T. de Medts in [7]. For d, k ≥ 2,
let Td,k denote the rooted tree in which the root r has valency k and all other
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vertices have valency d+1. The boundary of Td,k, denoted ∂Td,k, is endowed
with the visual metric, written dist, corresponding to the root r. An almost
automorphism of Td,k is a homeomorphism g ∈ Homeo(∂Td,k) such that
there exists a partition of ∂Td,k into finitely many balls ∂Td,k = B1⊔ . . .⊔Bn

for which g�Bi : Bi → g(Bi) is a homothety for every i. That is to say, for
each i, there is a constant λi such that dist(g(x), g(y)) = λidist(x, y) for all
x, y ∈ Bi.

The group of automorphisms Aut(Td,k) of the tree Td,k is a profinite group,
and the topology on AAut(Td,k) is such that Aut(Td,k) is a compact open
subgroup of AAut(Td,k).

1.1. Translations, elliptic elements, and locally elliptic subgroups.
An automorphism g of an unrooted tree is called elliptic if g stabilizes a
vertex or an edge, and it is called hyperbolic if there exists a bi-infinite
geodesic line along which g acts by translation. It is a classical result that
any automorphism of a tree is either elliptic or hyperbolic.

The first goal of this paper is to extend the elliptic/hyperbolic typology
of tree automorphisms to the almost automorphism setting.

Definition 1.1. An element g ∈ AAut(Td,k) is elliptic if there exists a set-
wise g-invariant partition ∂Td,k = B1 ⊔ . . .⊔Bn such that g�Bi : Bi → g(Bi)
is a homothety for every i.

Definition 1.2. An element g ∈ AAut(Td,k) is a translation if there exists
a ball B of ∂Td,k and some n ∈ Z such that gn�B : B → gn(B) is a homothety

and gn(B) ( B.

In the case k = 2, the group AAut(Td,2) contains Aut(Td+1) as an open
subgroup, where Td+1 is the unrooted regular tree with valance d+1. More-
over, our notions of elliptic elements and translations in AAut(Td,2) agree
with the notions of elliptic elements and hyperbolic elements in Aut(Td+1).

In a locally compact group G, an element g ∈ G is said to be peri-
odic if ⟨g⟩ is compact. Elliptic elements are easily seen to be periodic in
AAut(Td,k), and translations are never periodic. We show the converses to
these statements hold.

Proposition 1.3 (See Proposition 3.5). For g ∈ AAut(Td,k), the following
are equivalent:

(1) g is elliptic;
(2) g is periodic;
(3) g is not a translation.

A subgroup of AAut(Td,k) is called elliptic if every element is elliptic.
We characterize these subgroups in terms of the dynamics of the action
on ∂Td,k; this result again extends the classical characterization of elliptic
groups acting on trees [20, Proposition 26]. Recall for a locally compact

group G, a subgroup H ≤ G is locally elliptic if ⟨F ⟩ is compact for all
finite F ⊆ H.
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Theorem 1.4 (See Corollary 3.6). For H ≤ AAut(Td,k), the following are
equivalent:

(1) H contains only elliptic elements;
(2) H contains no translations;
(3) For every compactly generated subgroup Γ ≤ H, there exists a set-

wise Γ-invariant partition ∂Td,k = B1 ⊔ . . . ⊔ Bn into finitely many
balls such that γ�Bi : Bi → γ(Bi) is a homothety for every γ ∈ Γ and
1 ≤ i ≤ n;

(4) H is locally elliptic.

1.2. Commensurated subgroups. Two subgroups K,H ≤ G of a group
G are commensurable if K ∩ H has finite index in both K and H. A
subgroup H ≤ G is commensurated in G if gHg−1 is commensurable
with H for every g ∈ G. The commensurability class of a subgroup H is
the set of subgroups K such that H and K are commensurable.

Normal subgroups are trivial examples of commensurated subgroups, but
commensurated subgroups need not be normal in general. Group actions
on graphs are a natural source of commensurated subgroups: if G acts on
a connected locally finite graph, then vertex stabilizers must be commen-
surated in G. More generally, the point stabilizers of any subdegree finite
permutation group are commensurated.

The study of commensurated subgroups is of particular interest when
the ambient group has few normal subgroups, e.g. simple or just infinite
groups. A striking example of such an exploration is the work of Y. Shalom
and G. Willis, who classified commensurated subgroups for a large family
of arithmetic groups [21]. As an additional example, the second named au-
thor classified commensurated subgroups for finitely generated just infinite
branch groups [23].

In the present work, we classify the commensurated subgroups of certain
groups of tree automorphisms and tree almost automorphisms. For simplic-
ity, the following result is not stated here in full generality; see Theorem 4.3
for the full statement.

Theorem 1.5. Suppose that T is a biregular tree and Aut(T )+ is the sub-
group of Aut(T ) acting on T with two orbits of vertices. If Λ is a commen-
surated subgroup of Aut(T )+, then either Λ is finite, Λ is compact open, or
Λ = Aut(T )+.

While the results of Section 4 for groups acting on trees follow from fairly
classical arguments, the case of the group AAut(Td,k) is more complicated
and requires new techniques and intermediate results, including Theorem
1.4. In addition, we use the following result of Caprace–Reid–Willis: If G is
a non-discrete compactly generated topologically simple t.d.l.c. group which
is abstractly simple, then every infinite compact commensurated subgroup is
open. See Theorem 2.11 below.
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Theorem 1.6 (See Theorem 6.1). If Λ ≤ AAut(Td,k) is commensurated,

then either Λ is finite, Λ is compact and open, or Λ = AAut(Td,k). In par-
ticular, AAut(Td,k) admits exactly three commensurability classes of closed
commensurated subgroups.

It may happen that Λ is commensurated but not closed (see Example 4.4),
so in the conclusions of Theorems 1.5 and 1.6, passing to the closure Λ is
necessary. We remark further that t.d.l.c. groups admit a basis of neighbor-
hoods at the identity of compact open subgroups, and any compact open
subgroup must be commensurated in the ambient group. A non-discrete
and non-compact t.d.l.c. group therefore always admits at least three dis-
tinct commensurability classes of commensurated subgroups: the class of
the trivial subgroup, the class of a compact open subgroup, and the class of
the entire group. The conclusion of Theorem 1.6 is thus optimal.

We then consider the three groups F , T , and V introduced by R. Thomp-
son. Recall that T is the group of orientation-preserving homeomorphisms
of the circle which are piecewise linear with power-of-two slopes and have
only finitely many breakpoints all at dyadic rationals. The group F is the
stabilizer of 0 in T , so F acts on the interval [0, 1]. For a detailed introduc-
tion to these groups, we refer the reader to [6]. We will view F and T inside
the group V , which is itself a subgroup of the almost automorphism group
AAut(T2,2); see Subsection 2.2.

Theorem 1.7 (See Section 6). The following hold:

(1) The commensurated subgroups of Thompson’s group F are the nor-
mal subgroups of F . (These are the subgroups of F that contain the
derived subgroup of F .)

(2) Every proper commensurated subgroup of Thompson’s group T is fi-
nite.

(3) Every proper commensurated subgroup of Thompson’s group V is
locally finite.

In particular, Thompson’s group T is an example of a finitely presented
simple group with exactly two commensurability classes of commensurated
subgroups. To the best of our knowledge, no other group is known to have
these properties. We mention that the examples of finitely presented groups
which are torsion-free and simple, constructed by M. Burger and S. Mozes in
[5] as lattices in product of trees, admit non-trivial proper commensurated
subgroups, and these are always non-amenable; see the end of Section 4.

Our results also elucidate a difference between T and V . The group
V does admit a commensurated subgroup Λ ≤ V which is infinite and of
infinite index - namely the group of finitary automorphisms of T2,2; see for
instance [13, Example 6.7, Proposition 7.11]. Hence, while T has only two
commensurability classes of commensurated subgroups, V has at least three
commensurability classes of commensurated subgroups: the trivial group,
the group of finitary automorphisms of T2,2, and the entire group V .
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1.3. Applications. Our first application shows there exist strong restric-
tions on the possible continuous morphisms from the group AAut(Td,k) to a
t.d.l.c. group.

Corollary 1.8. If H is a t.d.l.c. group and ψ : AAut(Td,k) → H is a
continuous morphism, then ψ has closed image.

We emphasize that the conclusion of Corollary 1.8 fails for certain groups
of almost automorphisms of trees which may look similar to AAut(Td,k),
notably the family of groups AAutD(Td,k) considered in [7, 13, 18]. We refer
the reader to the discussion following Corollary 7.2 for details.

Since AAut(Td,k) is simple, Corollary 1.8 implies that any non-trivial
continuous morphism ψ : AAut(Td,k) → H is such that ψ : AAut(Td,k) →
ψ(AAut(Td,k)) is an isomorphism of topological groups.

Our results further impose restrictions on how Thompson’s groups can
embed into locally compact groups. Our first restrictions follow readily
from Theorem 1.7. The following results strongly contrast with the fact
that Thompson’s group F and T are respectively dense in the Polish groups
Homeo+([0, 1]) and Homeo+(S1).

Corollary 1.9. Any embedding of Thompson’s group F into a t.d.l.c. group
H intersects trivially any compact open subgroup of H. In particular, if F
acts faithfully on a connected locally finite graph, then the action on the set
of vertices is free.

Corollary 1.10. Any embedding of Thompson’s group T into a t.d.l.c. group
has discrete image. In particular, any non-trivial action of T on a connected
locally finite graph is proper.

These results also establish another difference between the groups F ,T ,
and V . The group V admits non-proper vertex-transitive actions on con-
nected locally finite graphs; for example, one can take a Cayley-Abels graph
of the group AAut(T2,2).

We lastly consider how T can appear as a lattice in a locally compact
group.

Theorem 1.11 (See Theorem 7.3). Suppose that G is a compactly generated
locally compact group admitting T as a lattice and denote by R the locally
elliptic radical of G. Then R is compact, G/R is a t.d.l.c. group with a
unique minimal non-trivial closed normal subgroup H, and H satisfies the
following properties:

(1) H is a compactly generated topologically simple t.d.l.c. group;
(2) H is cocompact in G/R and contains T as a lattice.

Whether or not H can be non-discrete in the above theorem is an in-
teresting open question. As there is a growing structure theory of simple
t.d.l.c. groups, see for example [8], the above result may help to resolve this
question.
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2. Preliminaries

2.1. Notations for Td,k. The tree Td,k is the rooted tree where the root r
has degree k and other vertices have degree d+ 1. The level of a vertex is
its distance from the root. If v is a vertex of level n, the neighbors of v of
level n + 1 are the children of v. The descendants of v are all vertices
w such that the geodesic from w to the root contains v. We denote by T v

d,k

the subtree spanned by the descendants of v, and we call T v
d,k the rooted

tree below v. A subtree L of Td,k is regular if there is a vertex v of level
at least one such that L = T v

d,k.

The boundary ∂Td,k is the set of infinite sequences of vertices (r =
ξ0, ξ1, . . .) such that ξn+1 is a child of ξn for every n ≥ 0. If ξ, ξ′ ∈ ∂Td,k
are two boundary points, we denote by N(ξ, ξ′) the largest integer n ≥ 0

such that ξn = ξ′n. Endowed with the metric dist(ξ, ξ′) := d−N(ξ,ξ′), the
space (∂Td,k, dist) is a compact metric space homeomorphic to a Cantor set.
The group of isometries of (∂Td,k, dist) is precisely the group Aut(Td,k) of
automorphisms of the rooted tree Td,k.

If L is a regular subtree of Td,k rooted at v, we will denote ∂L the subset
of ∂Td,k consisting of sequences (ξn)n∈N ∈ ∂Td,k such that ξn = v for some
n ≥ 1. One may check that ∂L is a proper ball of ∂Td,k and conversely that
every proper ball of ∂Td,k is of the form ∂L for some regular subtree L.

Let P be a partition of ∂Td,k. If P ′ is a partition refining P, we write
P ′ 6 P. We say that the partition P is regular if P consists of proper
balls; equivalently, P consists of sets of the form ∂L for regular subtrees L.
The n-th spherical partition of ∂Td,k is

Sn := {∂T v
d,k | d(r, v) = n}.

We make an easy observation that will often be used implicitly to ma-
nipulate regular partitions: For any metric balls B1, B2 ⊆ ∂Td,k, either
B1 ∩B2 = ∅, B1 ⊆ B2, or B2 ⊆ B1.

2.2. The group AAut(Td,k). We here give a brief account of the group
AAut(Td,k); we direct the reader to [7, 11] for more detailed discussions.

For metric spaces (X, dX) and (Y, dY ), a map ψ : X → Y is a homothety
if there is λ ∈ R+ such that dX(x, x′) = λdY (ψ(x), ψ(x

′)) for all x, x′ ∈ X.
An almost automorphism of Td,k is a homeomorphism g ∈ Homeo(∂Td,k)



COMMENSURATED SUBGROUPS 7

such that there exists a regular partition ∂Td,k = B1 ⊔ . . . ⊔ Bn for which
g�Bi : Bi → g(Bi) is a homothety for every i.

Definition 2.1. For g ∈ AAut(Td,k), a partition P = {B1, . . . , Bn} of ∂Td,k
into finitely many proper balls is admissible for g if g�Bi : Bi → g(Bi) is
a homothety for every i. We say a partition P is admissible for a subgroup
K ≤ AAut(Td,k) if it is admissible for each element k ∈ K.

If P is admissible for g ∈ AAut(Td,k) and P ′ is a regular partition refining
P, then P ′ is admissible for g. We denote by g.P the partition obtained by
applying g, i.e. g.P := {g(B) | B ∈ P}. If P is admissible for g, then g.P is
a regular partition admissible for g−1.

Definition 2.2. An element g ∈ AAut(Td,k) is elliptic if there exists a
partition P = {B1, . . . , Bn} of ∂Td,k that is admissible for g and preserved
by g - i.e. g.P = P.

For a regular partition P and K ≤ AAut(Td,k), we define the stabilizer
StabK(P) of P inK to be the set of elements k ∈ K such that P is admissible
for k and k.P = P. When K = AAut(Td,k), we simply write Stab(P).
The group Stab(P) is a compact open subgroup of AAut(Td,k). Elements
stabilizing a spherical partition admit a useful characterization.

Lemma 2.3. Let g ∈ AAut(Td,k). There is a spherical partition Sn such
that g ∈ Stab(Sn) if and only if for all partitions P admissible for g and
B ∈ P, the restriction g�B : B → g(B) is an isometry.

Proof. Suppose that g ∈ Stab(Sn) and observe that g�B : B → g(B) is an
isometry for all B ∈ Sn. Consider P an admissible partition for g. By taking
a larger n if needed, we may assume that Sn 6 P. For each C ∈ P, there
is thus B ∈ Sn such that B ⊆ C. The element g acts as an isometry on B,
hence g must act as an isometry on C, since g acts as a homothety on C.
We have thus verified the forward implication.

Conversely, we may find a spherical partition Sn which is admissible for
g. Since g restricts to an isometry on each B ∈ Sn, the image g.Sn is a
regular partition of ∂Td,k by balls of the same diameter. It follows that
g.Sn = Sn. �

For a ball B ⊆ ∂Td,k and K ≤ AAut(Td,k), we define StabK(B) to be the
set of elements k ∈ K that setwise preserve B and are such that k�B : B → B
is an isometry. The subscript K will be suppressed when K = AAut(Td,k).
The group Stab(B) is open; however, it is not compact when B ( ∂Td,k.

For the rest of the present article, we fix an embedding of Td,k into the
oriented plane such that each level n of Td,k lies on a horizontal line y = rn
and (rn)n∈N is strictly monotone. This induces a total order on the boundary
∂Td,k. An element g ∈ AAut(Td,k) is locally order preserving if g admits
an admissible partition P such that g�Bi : Bi → g(Bi) preserves the order
for every i. The set of locally order preserving elements of AAut(Td,k) forms
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a subgroup isomorphic to the Higman-Thompson group Vd,k [10]. In this
notation, Thompson’s group V is V2,2.

We conclude our discussion by recalling that AAut(Td,k) is simple as an
abstract group.

Theorem 2.4 (Kapoudjian). The group AAut(Td,k) is abstractly simple.

The proof in [11] is given for the case k = 2, but the argument readily
adapts to arbitrary k by using the simplicity of the commutator subgroup
[Vd,k, Vd,k] of the Higman-Thompson groups Vd,k and the simplicity of the
group of type preserving automorphisms of a regular unrooted tree.

2.3. Commensurated subgroups.

Definition 2.5. For a group G with subgroups H and K, we say H ≤ G is
commensurated by K if kHk−1 ∩H has finite index in H for all k ∈ K.
When K = G, we say H is a commensurated subgroup of G

We shall make use of the following equivalent definition of a commensu-
rated subgroup: For G a group, a subgroup H ≤ G is commensurated
if the left H-action on G/H has only finite orbits. We use this definition
whenever convenient.

Our first two lemmas appear to be folklore; we include proofs for com-
pleteness.

Lemma 2.6 (Folklore). For H a group, if A and B are commensurated sub-
groups of H and A normalizes B, then the subgroup AB is commensurated
in H.

Proof. Let g ∈ G and consider X := BgAB ⊆ G/AB. Since B is com-
mensurated, we find a finite set F ⊆ G such that BgB = FB. We deduce
that

X = BgAB = BgBA = FBA = FAB,

so X is a finite subset of G/AB. Since A is commensurated, the set AFA ⊆
G/A is finite, and thus, AX is also finite. We see that BAX = ABX = AX
is a finite AB-orbit containing gAB. Since g was arbitrary, we deduce that
every left AB-orbit on G/AB is finite, so AB is commensurated. �
Lemma 2.7 (Folklore). For H a topological group, if A is a commensurated
subgroup, then A is also commensurated.

Proof. Taking x ∈ H, we may find a finite set F ⊆ A such that A ⊆∪
FxAx−1. It follows A ⊆

∪
FxAx−1. We conclude that A ∩ xAx−1 has

finite index in A, hence A is commensurated. �
We shall need a more specialized version of Lemma 2.6. To prove the

desired result, we make use of the following theorem independently proved
by G. Schlichting [19] and G.M. Bergman and H.W. Lenstra [2, Theorem
6]. When K satisfies the following theorem, we say that K boundedly
commensurates H.
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Theorem 2.8. Let G be a group with subgroups H and K. Then the fol-
lowing are equivalent:

(1) The supremum supk∈K |H : H ∩ kHk−1| is finite.
(2) There is N ≤ G commensurable with H such that K normalizes N .

In the setting of locally compact groups, the Baire category theorem al-
lows us to obtain bounded commensuration relatively easily; the next lemma
indeed holds for any Hausdorff topological group in which the Baire category
theorem holds - i.e. a Baire group.

Lemma 2.9. Let G be a locally compact group with H ≤ G a closed sub-
group. If K is a compact subgroup of G that commensurates H, then K
boundedly commensurates H.

Proof. For n ≥ 1, consider the set

Ωn := {u ∈ K | |H : H ∩ uHu−1|, |H : H ∩ u−1Hu| 6 n}.

Say uk ∈ Ωn is a net such that uk → u ∈ K and fix c0, . . . , cn ∈ H. Since
uk ∈ Ωn, for every k we may find ik ̸= jk such that cikc

−1
jk

∈ ukHu
−1
k . By

passing to a subnet, there exist i ̸= j such that cic
−1
j ∈ ukHu

−1
k for every

k. Taking the limit as k goes to infinity, we obtain that cic
−1
j ∈ uHu−1.

We have thus proved that the index |H : H ∩ uHu−1| is at most n, and by
applying the same argument to u−1, we obtain that |H : H ∩u−1Hu| is also
at most n. Therefore, u ∈ Ωn, and Ωn is closed.

On the other hand, K =
∪

n∈NΩn since K commensurates H, so by
the Baire category theorem, there is some n such that Ωn has non-empty
interior. The compactness of K implies that there is a finite set F ⊆ K such
that K ⊆

∪
FΩn. We may find m where F ⊆ Ωm, hence K ⊆ ΩmΩn. An

easy calculation now shows that ΩmΩn ⊆ Ωmn, and thus, K = Ωmn. �

Proposition 2.10. Let G be a t.d.l.c. group with H ≤ G a closed com-
mensurated subgroup. If H is locally elliptic, then for every compact open
subgroup U ≤ G, there exists a commensurated, locally elliptic subgroup H ′

such that H ′ contains U and |H : H ′ ∩H| <∞.

Proof. Since U is compact and H is closed and commensurated, Lemma 2.9
implies that U boundedly commensurates H. We are therefore in position
to apply Theorem 2.8 to obtain a subgroup L commensurable with H such
that U 6 NG(L).

We claim H ′ := LU satisfies the proposition. Since L is commensurable
with H, the subgroup L is locally elliptic, and thus, H ′ is locally elliptic
since being locally elliptic is stable by extension [16]. Lemma 2.6 ensures H ′

is commensurated, and |H : H ′ ∩H| < ∞, since H ′ contains H ∩ L which
has finite index in H. �

We finally require a deep result on commensurated subgroups of simple
groups.
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Theorem 2.11 (Caprace–Reid–Willis, [9, Theorem 3.9]). Suppose that G
is a compactly generated t.d.l.c. group. If G is abstractly simple, then every
compact commensurated subgroup of G is either finite or open.

3. Translations, elliptic elements, and elliptic subgroups

A subgroup of AAut(Td,k) containing no translations will be called el-
liptic. This paragraph consists of a technical study of elliptic subgroups,
which leads to a complete characterization of these.

For g ∈ AAut(Td,k), let P be an admissible partition and define

ΩP,g := {Q ∈ g.P | ∃ B ∈ P for which B ( Q}

If ΩP,g = ∅, then each Q ∈ g.P is a subset of some B ∈ P. Since |P| = |g.P|,
we deduce that P = g.P, which implies that g is elliptic. The set ΩP,g is
thus the failure of P = g.P. The goal of this subsection is to show that
given an translation-free subgroup K, we can always refine a partition P to
a partition Q with ΩQ,g = ∅ for every g ∈ K.

We shall need a tool to refine partitions in a precise way. Let Y be a set
and Z ⊆ P(Y ), with P(Y ) the power set of Y . We define Z ∈ min(Z) if
and only if Z ∈ Z and for all Z ′ ∈ Z if Z ′ ⊆ Z, then Z ′ = Z. That is to
say, min(Z) is the collection of ⊆-minimal elements of Z. For finite sets Z,
the set min(Z) is always non-empty.

Suppose that A ⊆ Sym(Y ) is a collection of permutations. Each a ∈ A
acts on P(Y ), and for Z ∈ P(Y ), we denote this action by a(Z). Given
R ⊆ Y and X ⊆ P(Y ), we now define the desired function:

ΘA(R,X ) :=

{
min {a(Z) | Z ∈ X and a(Z) ⊆ R} if there is some a(Z) ⊆ R;

{R} else.

The function ΘA on input (R,X ) outputs either the set of minimal elements
of the form a(Z) with Z ∈ X and a ∈ A contained in R or the set {R}.

We now demonstrate how to use ΘA to refine partitions.

Remark 3.1. To gain intuition for the definitions and argumentation, it
may be helpful to first consider the case of K = {1} in the following. This
case is enough to prove Proposition 3.5.

Lemma 3.2. Suppose that P is a regular partition admissible for a relatively
compact group K. If P ′ 6 P is a regular partition, then K.P ′ := {k(B) |
B ∈ P ′ and k ∈ K} is a finite set and min(K.P ′) is a regular partition.

Proof. For each B ∈ P ′, the subgroup Stab(B) is open, so since K is rel-
atively compact, K/StabK(B) is finite. The set K.B := {k(B) | k ∈ K}
has a natural bijection with K/StabK(B), and thus, K.B is finite. It now
follows that K.P ′ is finite.

The set K.P ′ consists of balls since P ′ is admissible for each k ∈ K. That
min(K.P ′) is a partition is now an easy exercise. �
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Lemma 3.3. Suppose that g ∈ AAut(Td,k), K ≤ AAut(Td,k) is relatively
compact, and P is an admissible partition for g and K. If P ′ ≤ P is a
regular partition, then the set

∆(P ′) :=
∪

Q∈g.P ′

ΘK(Q,P ′)

enjoys the following properties:

(1) ∆(P ′) is a regular partition.
(2) g−1.∆(P ′) is a regular partition refining P ′.
(3) Each C ∈ g−1.∆(P ′) is either equal to some B ∈ P ′ or of the form

g−1k(B) for some k ∈ K and B ∈ P ′.

Proof. The partition P ′ is again admissible for g, so g.P ′ is a regular parti-
tion. For the first claim, it suffices to show ΘK(Q,P ′) is a regular partition
for each Q ∈ g.P ′. Fixing Q ∈ g.P ′, if ΘK(Q,P ′) = {Q}, then there is
nothing to prove. We thus suppose that there is k(B) ⊆ Q for some k ∈ K
and B ∈ P ′.

Lemma 3.2 ensures that min(K.P ′) is a regular partition. Since Q is a
ball and there is some C ∈ min(K.P ′) contained in Q, it follows that Q is
partitioned by the elements of min(K.P ′) contained in Q. That is to say,
the elements of ΘK(Q,P ′) form a regular partition of Q. We deduce (1).

By construction, ∆(P ′) refines g.P ′, so since g.P ′ is admissible for g−1,
the partition ∆(P ′) is admissible for g−1. Hence, g−1.∆(P ′) is a regular
partition refining P ′, verifying (2).

For (3), each D ∈ ∆(P ′) is either equal to g(B) for some B ∈ P ′ or of
the form k(B) for some B ∈ P ′ and k ∈ K. Each C ∈ g−1.∆(P ′) is thus
either equal to some B ∈ P ′ or of the form g−1k(B) for some k ∈ K and
B ∈ P ′. �

Let us now prove the main technical theorem of this section.

Theorem 3.4. Suppose that g ∈ AAut(Td,k), K ≤ AAut(Td,k) is relatively
compact, and P is admissible for g and K. If ⟨K, g⟩ contains no translations,
then there is a regular partition Q refining P such that ⟨K, g⟩ ≤ Stab(Q).

Proof. We use the function ∆ defined in Lemma 3.3 to build a refining
sequence of regular partitions (Pi)i∈N. Set P0 := P. If we have defined Pn,
define

Pn+1 := g−1.∆(Pn).

Lemma 3.3 ensures that Pn+1 refines Pn and is a regular partition. Observe
that each B ∈ Pn+1 has the form B = γ(Q) for some γ ∈ ⟨K, g⟩ and Q ∈ P.
An induction argument shows for such a B, the element γ is such that
γ�Q : Q→ B is a homothety.

Suppose for contradiction that the sequence of partitions Pn never sta-
bilizes. Since the partitions are refining and finite, there is B0 ∈ P0 which
is refined in infinitely many Pn. Let n1 be the next index such that B0

is properly refined in Pn1 . Since the partition Pn1 is finite, there is some
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B1 ∈ Pn1 such that B1 ( B0 and B1 is refined in infinitely many Pn. We
produce an infinite sequence B0 ) B1 ) . . . by continuing in this fashion.

Each Bi has the form ξ(Q) for some ξ ∈ ⟨K, g⟩ and Q ∈ P. Since P
is finite, we may find Bj ( Bi where Bj = δ(Q) and Bi = ξ(Q) for some
ξ, δ ∈ ⟨K, g⟩ and Q ∈ P. The element δ acts as a homothey on Q. On the
other hand, ξ−1 acts as a homothety on Bi, so it acts as a homothety on
δ(Q) = Bj . We thus deduce that γ := ξ−1δ acts as a homothety on Q and
that γ(Q) ( Q. Hence, γ is a translation, contradicting our assumption that
⟨K, g⟩ contains no translation.

Fix N ∈ N such that our sequence of partitions stabilizes at N . Set
Q := PN and observe that Q is admissible for g. We now compute

ΩQ,g := {R ∈ g.Q | ∃ Q ∈ Q for which Q ( R}.

Suppose that ΩQ,g is non-empty; say that g(L) ∈ ΩQ,g and Q ∈ Q is such
that Q ( g(L). Forming ∆(Q), it follows that there is Q′ ∈ Q and k ∈ K
such that k(Q′) ∈ ∆(Q) and k(Q′) ( g(L). Hence, g−1k(Q′) ∈ PN+1 =
PN = Q. On the other hand, g−1k(Q) ( L ∈ Q contradicting that Q is a
partition. We conclude that ΩQ,g = ∅, so g ∈ Stab(Q).

Let us now take k ∈ K and compute ΩQ,k. Suppose that ΩQ,k is non-
empty; say that k(L) ∈ ΩQ,k and Q ∈ Q is such that Q ( k(L). Thus
k−1(Q) ( L, and since g stabilizesQ, we have that k−1(Q) ( g(g−1(L)) with
g−1(L) ∈ Q. Forming ∆(Q), it follows there is Q′ ∈ Q and k′ ∈ K such that
k′(Q′) ∈ ∆(Q) and k′(Q′) ( g(g−1(L)), and thus, g−1k′(Q′) ∈ PN+1 = Q.
On the other hand, g−1k′(Q′) ( g−1(L) ∈ Q contradicting that Q is a
partition. We conclude that ΩQ,k = ∅, so k ∈ Stab(Q).

We have established that ⟨K, g⟩ ≤ Stab(Q), verifying the theorem. �

Applying our technical theorem, we prove the promised results on elliptic
elements and subgroups.

Proposition 3.5. For g ∈ AAut(Td,k), the following are equivalent:

(1) g is elliptic;
(2) some power of g is an isometry of ∂Td,k; i.e. there is n ≥ 1 such that

gn ∈ Aut(Td,k);
(3) g is periodic;
(4) g is not a translation.

Proof. The implication (2) ⇒ (3) is immediate, and Theorem 3.4 gives (4) ⇒
(1).

For (1) ⇒ (2), suppose that g is elliptic and let m be the cardinality of
an admissible partition P that is preserved by g. The power gm! stabilizes
all the parts of P, and therefore gm! ∈ Aut(Td,k).

For (3) ⇒ (4), suppose that g is periodic and suppose for contradiction
that g is a translation. We may find a power n ∈ Z and an admissible
partition P for which there is B ∈ P with gn(B) ( B. It then follows
that gin(B) ( B for all i ≥ 1. On the other hand, since the subgroup of
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AAut(Td,k) consisting of elements set-wise stabilizing the ball B is open and
gn is periodic, there is m ≥ 1 such that gmn(B) = B, which is absurd. �

Corollary 3.6. For H ≤ AAut(Td,k), the following are equivalent:

(1) H contains only elliptic elements;
(2) For every compactly generated subgroup Γ ≤ H, there is a regular

partition R such that Γ 6 Stab(R);
(3) H is locally elliptic.

Proof. The implication (2) ⇒ (3) is immediate. We deduce (3) ⇒ (1) from
Proposition 3.5, as every element in a locally elliptic subgroup is periodic.

For (1) ⇒ (2), there are finitely many γ1, . . . , γn ∈ Γ such that these
along with K := Γ ∩ Aut(Td,k) generate Γ. Letting P be an admissible
partition for γ1, we see that P is admissible for K and γ1, and applying
Proposition 3.5, ⟨γ,K⟩ contains no translations. Theorem 3.4 now supplies
a regular partition Q refining P such that ⟨γ,K⟩ ≤ Stab(Q). Repeating this
argument, we deduce that Γ ≤ Stab(R) for some regular partition R. �

We stress an interesting consequence of Corollary 3.6: If K ≤ AAut(Td,k)
is compact, then there is a regular partition P such that K ≤ Stab(P).

It is not hard to see from the definition of the Higman-Thompson group
Vd,k inside AAut(Td,k) that the elliptic elements of Vd,k are precisely its
elements of finite order. Corollary 3.6 therefore implies the following result,
which was proved in [17, Theorem 3].

Corollary 3.7. Every torsion subgroup of the Higman-Thompson group Vd,k
is locally finite.

Corollary 3.6 may also be applied to other interesting finitely generated
subgroups of AAut(Td,k), for instance the finitely presented simple group
containing the Grigorchuk group constructed in [17]. We refer to the dis-
cussion following Question 6.5 for more details.

4. Commensurated subgroups of groups acting on trees

We now begin our study of commensurated subgroups. In this section,
we consider commensurated subgroups of groups acting on trees.

Lemma 4.1. Let G be a group with a commensurated subgroup Λ. Then
for every g, h ∈ G, there exists a finite index subgroup Λ′ ≤ Λ such that
[[g,Λ′] , h] ≤ Λ.

Proof. Since the intersection of finitely many subgroups of finite index re-
mains of finite index, there is a finite index subgroup Λ′ ≤ Λ such that
xΛ′x−1 ≤ Λ for every x ∈ {g, h, hg}. For k ∈ G, a simple computation
yields

[[g, k] , h] = (gkg−1)k−1(hkh−1)(hgk−1(hg)−1).
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Taking k = λ ∈ Λ′, this expressions gives a decomposition of [[g, λ] , h] as a
product of four elements all of which belong to Λ. Therefore, [[g, λ] , h] ∈ Λ,
and the statement is proved. �

Let T be a simplicial tree. If G is a group acting on T , we say that
the action is of general type if there exist two hyperbolic elements in G
without common endpoints. We say that the action is minimal if there is
no proper invariant subtree.

Proposition 4.2. Let G ≤ Aut(T ) whose action on T is minimal and of
general type and let Λ ≤ Aut(T ) be a subgroup that is commensurated by G.
Then either

(1) Λ stabilizes a vertex or an edge; or
(2) the action of Λ on T is of general type, and for every half-tree T ′, Λ

contains the commutator subgroup of the pointwise fixator of T ′ in
G.

Proof. We assume that Λ stabilizes neither a vertex nor an edge and prove
that the second assertion holds.

Let us first argue that the action of Λ on T must be of general type. If
not, there is Ω ⊂ ∂T of cardinality one or two that is Λ-invariant such that
Ω is the only Λ-invariant finite subset of ∂T . Since the action of G on T
is of general type, we may find g ∈ G such that g(Ω) is disjoint from Ω.
By assumption g commensurates Λ, so there exists a finite index subgroup
Λ′ ≤ Λ such that gΛ′g−1 ≤ Λ. Consequently Λ has a finite index subgroup
which preserves g(Ω), implying that the Λ-orbit of any element of g(Ω) in
∂T is finite. This is a contradiction.

We now argue the action of Λ on T is minimal. It follows from the pre-
vious paragraph that Λ contains hyperbolic elements and therefore admits
a unique minimal invariant subtree X, which is the union of the axes of the
hyperbolic elements of Λ. Let γ ∈ Λ be a hyperbolic element and let g ∈ G.
Since G commensurates Λ, there is some k ≥ 1 such that gγkg−1 ∈ Λ. The
axis of the hyperbolic element gγkg−1 ∈ Λ thus belongs to X. This axis is
the image by g of the axis of γ, so this proves that X is in fact G-invariant.
By minimality of the action of G on T , we have X = T .

Let T ′ be a half-tree of T . Since the action of Λ on T is minimal and of
general type, Λ must contain a hyperbolic element γ whose axis is contained
in T ′. This is a classical fact; see for instance [12, Lemma 4.3]. Take
g, h ∈ G fixing pointwise T ′. We show that the commutator [g, h] belongs
to Λ. The same argument as in the proof of [12, Lemma 4.4] shows that
[g, h] = [[g, γ], h]. Moreover, this argument only depends on the axis of γ
and not on γ itself, so we indeed have [g, h] = [[g, γk], h] for every non-zero
k ∈ Z. Since G commensurates Λ, Lemma 4.1 supplies an integer k ≥ 1,
depending on g, h, such that [[g, γk], h] belongs to Λ. The commutator [g, h]
therefore lies in Λ, and the proof is complete. �



COMMENSURATED SUBGROUPS 15

We now obtain examples of non-discrete compactly generated simple
t.d.l.c. groups with exactly three commensurability classes of closed com-
mensurated subgroups. We refer the reader to the original paper of Tits for
the definition of the independence property [22, Section 4.2]. For a subgroup
G ≤ Aut(T ), we denote by G+ the subgroup of G generated by pointwise
fixators of edges. Note that when G is endowed with the compact-open
topology, G+ is an open subgroup of G.

Theorem 4.3. Suppose that G is a closed subgroup of Aut(T ) satisfying
Tits’ independence property and whose action on T is minimal and of general
type. Suppose further that the group G+ acts cocompactly on T . If Λ is a
commensurated subgroup of G+, then either Λ is finite, Λ is compact open,
or Λ = G+.

Proof. Since G satisfies Tits’ independence property, the group G+ is ab-
stractly simple according to Tits’ theorem [22, Théorème 4.5]. That G+ acts
cocompactly on T implies that G+ is additionally compactly generated; see
for example [7, Lemma 2.4].

If Λ stabilizes a vertex or an edge, then Λ is a relatively compact subgroup
of G+. We are then in position to apply Theorem 2.11, which shows that Λ
is either finite or Λ is compact and open.

In the case Λ stabilizes neither a vertex nor an edge, Proposition 4.2
implies the subgroup Λ must contain the subgroup N of G+ generated by
the derived subgroups of fixators of half-trees in G+. The subgroup N is
clearly normal in G+. Furthermore, N cannot be trivial. Indeed, otherwise
the group G+ would be locally abelian, which is impossible thanks to [24,
Theorem 2.2]. We thus have have N = G+, so in particular Λ = G+. �

If T is a biregular tree, then the full automorphism group of T satisfies
the assumptions of Theorem 4.3, and therefore any proper commensurated
subgroup of Aut(T )+ is either finite or has compact open closure.

The following example shows that it is not possible to conclude in the
second case of Theorem 4.3 that Λ itself is compact open. We remark that
the same construction holds in the group AAut(Td,k), so AAut(Td,k) also
admits a multitude of non closed commensurated subgroups.

Example 4.4. Fix a vertex v0 in T . Let Aut(T )(v0) be the stabilizer of v0
in Aut(T ) and define the homomorphism

π : Aut(T )(v0) →
∏
n≥1

{±1} =: K

by taking the signature of the permutation induced on every sphere around
v0.

For an ultrafilter ω on N>0, the set Kω of sequences (xn)n≥1 ∈ K such
that ω-almost surely xn = 1 is a subgroup of index two of K. Since π is
onto, the preimage Pω of Kω in Aut(T )(v0) is of index two in Aut(T )(v0).
The group Pω is then commensurable with a compact open subgroup of
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Aut(T )+, and thus, it must be commensurated in Aut(T )+. However, one
easily checks that Pω is closed in Aut(T )+ only if the ultrafilter ω is principal,
and consequently there exist many non-closed commensurated subgroups in
Aut(T )+.

An important class of groups satisfying Tits’ independence property is
the collection of groups U(F ) introduced by Burger and Mozes, consisting
of automorphisms of a d-regular tree whose local action is prescribed by a
permutation group F . For a formal definition and basic properties of these
groups, we refer the reader to [4]. We only mention that the permutation
groups F which are transitive and generated by their point stabilizers are
exactly those for which the group U(F )+ is the subgroup of index two of
U(F ) preserving the type of vertices.

We deduce from Theorem 4.3 the following result for commensurated
subgroups of U(F ).

Corollary 4.5. If F is transitive permutation group generated by its point
stabilizers, then every proper commensurated subgroup of U(F )+ is either
finite or has compact open closure.

In the case F is two transitive and the point stabilizers are perfect, [14,
Theorem 8.6] shows we need not pass to closures - i.e. every proper com-
mensurated subgroup of U(F )+ is either finite or compact and open. An
example of such a group is U(A6)

+ where A6 is a permutation group in the
natural manner.

We conclude this section with an observation about groups acting on
products of trees. If T1 and T2 are two simplicial trees, we will denote
by pr1 and pr2 the projections from Aut(T1) × Aut(T2) onto, respectively,
Aut(T1) and Aut(T2).

Proposition 4.6. Let T1, T2 be locally finite trees and Γ ≤ Aut(T1) ×
Aut(T2) be a discrete subgroup such that the action of Γ on Ti is mini-
mal and of general type for i = 1, 2. Assume further that the projections
pr1(Γ) and pr2(Γ) are non-discrete. Then the following hold:

(1) Γ has no infinite amenable commensurated subgroups, and
(2) Γ admits infinite and infinite index commensurated subgroups.

Proof. Assume that Λ is an amenable commensurated subgroup of Γ. The
actions of Λ on T1 and T2 cannot be of general type, since otherwise Λ
would contain non-abelian free subgroups. Since Λ is commensurated in Γ,
it follows from Proposition 4.2 that Λ must stabilize a vertex or an edge in
each factor. Since Γ is discrete in Aut(T1) × Aut(T2), this implies that Λ
must be finite.

For (2), choose a vertex v of T1 and denote by Λ the stabilizer of v
in Γ for the projection action of Γ on T1. Since T1 is locally finite, Λ is
commensurated in Γ. The subgroup Λ is not finite because otherwise pr1(Γ)
would be discrete in Aut(T1). On the other hand, Λ is not of finite index in



COMMENSURATED SUBGROUPS 17

Γ, because this would imply that the Γ-orbit of v is finite, contradicting the
fact that the action of Γ on T1 is of general type. �

Proposition 4.6 applies in particular to the finitely presented simple groups
constructed by Burger and Mozes in [5].

Remark 4.7. The (non-)existence of infinite amenable commensurated sub-
groups is a property that naturally appears in the study of lattice envelopes
of countable groups; see [1].

5. Technical results for almost automorphism groups

For our results for commensurated subgroups in almost automorphism
groups, we require several technical theorems. This section establishes these.

5.1. Commensurated subgroups with a translation.

Lemma 5.1. If γ ∈ AAut(Td,k) is a translation, then there exist disjoint
balls B1 and B2 of ∂Td,k and n ∈ Z such that γn(B1) � B2 and γ

n(B2) � B2.

Proof. By assumption, there is a ball B and n ∈ Z such that γn(B) � B.
Take B2 := γn(B) and B1 any proper ball of B disjoint from B2. The
verification that these balls satisfy the conclusion is immediate. �

In the next statement and its proof, we adopt the following notation: if
G ≤ AAut(Td,k) and B is a ball of ∂Td,k, we denote by GB the subgroup of
G acting trivially outside of B.

The proof of the next result is in the same spirit as the proof of Proposition
4.2; that is to say, it uses the classical “double commutator” trick.

Proposition 5.2. Suppose that Λ ≤ AAut(Td,k) contains a translation. If
G ≤ AAut(Td,k) commensurates Λ, then there exists a proper ball B such
that [GB, GB] ≤ Λ. If additionally L ≤ [GB, GB] has no proper finite index
subgroup, then Λ contains the group generated by all G-conjugates of L.

Proof. Fix γ ∈ Λ a translation. Thanks to Lemma 5.1, there exist disjoint
balls B1, B2 and n ∈ Z such that γn(B1) � B2 and γn(B2) � B2. The
obvious induction shows that we indeed have γkn(B1) � B2 and γkn(B2) �
B2 for every k ≥ 1.

Fix some k ≥ 1. Taking x ∈ GB1 , we consider the commutator uk :=
[x, γkn]. On the complement of B1, x acts trivially, so uk acts trivially
outside of B1 ∪ γkn(B1). The element uk additionally coincides with x on
B1 and with γknx−1γ−kn on γkn(B1).

For an arbitrary y ∈ GB1 , we consider the element

vk := [uk, y] = [[x, γkn], y].

As with uk, the element vk acts trivially outside B1∪γkn(B1). Furthermore,
vk is also trivial on γkn(B1), because y acts trivially on this ball. We thus
deduce that vk acts trivially outside B1 and acts on B1 as [x, y]. Since the
element [x, y] is supported in B1, we have vk = [x, y].
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To conclude the proof, we apply Lemma 4.1 to obtain some k ≥ 1 such
that vk = [[x, γkn], y] belongs to Λ. The previous paragraph now implies
that [x, y] is in Λ. Since x and y are arbitrary elements of GB1 , we have
proved that Λ contains the commutator subgroup of GB1 .

If L has no proper finite index subgroup, then since Λ is commensurated
by G, one must have L ≤ Λ ∩ gΛg−1 for every g in G. The group Λ thus
contains all the conjugates of L by elements of G, and so it contains the
group generated by the conjugates. �

In the following result, Fd,k and Td,k denote K. Brown’s generalizations of
Thompson’s groups F and T ; see [3]. The groups Fd,k and Td,k are viewed
as subgroups of Vd,k, so in particular they sit inside AAut(Td,k).
Theorem 5.3. Let G denote one of following groups:

(i) the commutator subgroup F ′
d,k of the group Fd,k;

(ii) the group Td,k for d, k with gcd(k, d− 1) = 1;
(iii) the commutator subgroup V ′

d,k of the group Vd,k; or

(iv) the almost automorphism group AAut(Td,k);
If Λ ≤ AAut(Td,k) is commensurated by G and contains a translation, then
Λ contains G.

Proof. In each of these cases, the group G is a simple group; see [3] for
(i)− (iii) and Theorem 2.4 for AAut(Td,k).

Since Λ contains a translation, Proposition 5.2 ensures the existence of
a proper ball B of ∂Td,k such that [GB, GB] ≤ Λ. It is easy to see that
the subgroup GB also contains a non-trivial simple group: For G = F ′

d,k

or G = Td,k, the group GB contains F ′
d,d. In the case of G = V ′

d,k or

G = AAut(Td,k), we have that GB contains V ′
d,d or AAut(Td,d).

The second statement of Proposition 5.2 now implies the group Λ must
contain the normal closure of some non-trivial subgroup of GB in G. As G
itself is simple, we conclude that G ≤ Λ, completing the proof. �
5.2. Elliptic commensurated subgroups. We now consider commensu-
rated subgroups D 6 AAut(Td,k) which contain no translations. Corol-
lary 3.6 ensures the subgroup D is indeed locally elliptic, so we will study
commensurated locally elliptic subgroups. In view of Proposition 2.10, a
commensurated locally elliptic subgroup can be extended by a compact
open subgroup and remain both locally elliptic and commensurated. We
thus consider locally elliptic subgroups that contain Aut(Td,k).

5.2.1. Preliminaries. Recall that the n-th spherical partition of ∂Td,k is

Sn := {∂T v
d,k | d(r, v) = n}

where r is the root of Td,k.
Lemma 5.4. Suppose that H ≤ AAut(Td,k) is locally elliptic and that
StabH(Sm) acts transitively on Sm for each m ≥ 1. For each h ∈ H,
there is then n ≥ 1 such that h ∈ Stab(Sn).



COMMENSURATED SUBGROUPS 19

Proof. Since h is periodic, Proposition 3.5 ensures h ∈ Stab(P) for some
regular partition P. Suppose for contradiction that we cannot choose P to
be a spherical partition. Lemma 2.3 implies there is an admissible partition
Q for h and B ∈ Q such that h�B : B → h(B) is not an isometry. The
homothety h�B is thus such that the ball h(B) has either strictly smaller
or strictly larger diameter than that of B. As the cases are similar, let us
suppose that the former holds.

Let Sm be a spherical partition refining Q. Taking C ∈ Sm such that
C ⊆ B, the ball h(C) has strictly smaller diameter than C. We may then
find D ∈ Sm such that h(C) ( D. On the other hand, StabH(Sm) acts
transitively on Sm, so there is g ∈ StabH(Sm) such that g(D) = C. Forming
the element gh, we see that gh(C) ( C, and thus, gh is a translation,
contradicting our assumption on H. �

Via Lemmas 5.4 and 2.3, each element g of a locally elliptic subgroup
containing Aut(Td,k) acts as an isometry on the parts of any admissible
partition for g. This allows us to isolate a property incompatible with com-
mensuration.

Definition 5.5. Suppose that B, U , and W are balls in ∂Td,k. We say h ∈
AAut(Td,k) breaks the tree below B for (U,W ) if diam(U) = diam(W )
with U,W ⊆ B, the element h fixes pointwiseW , and h acts as a homothety
on U with B ∩ h(U) = ∅. We call a sequence of triples ((hi, Ui,Wi))i∈I a
breaking sequence for B if hi breaks the tree below B for (Ui,Wi) and
Ui+1,Wi+1 (Wi.

h = id

h

B

U Wh(U)

∂Td,k

Figure 1. An element h ∈ AAut(Td,k) breaking the tree
below B for U and W .

Lemma 5.6. Suppose that H ≤ AAut(Td,k) is locally elliptic and StabH(Sm)
acts transitively on Sm for each m ≥ 1. If there is an infinite breaking se-
quence ((hi, Ui,Wi))i∈N for a ball B with hi ∈ H for all i, then H is not
commensurated.

Proof. For each k ∈ N, the sequence ((hi, Ui,Wi))i>k is a breaking sequence
for the tree below Wk. By replacing B with W2 if necessary, we may assume
diam(B) ≤ d−2.

Fix m ≥ 2 such that the spherical partition Sm contains B. Lemmas 5.4
and 2.3 imply that hi(Ui) is a ball of diameter diam(Ui) for each i ∈ N.
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There is thus some Bi ∈ Sm such that hi(Ui) ( Bi. Since Sm is finite,
we may find B′ ∈ Sm and an infinite subsequence (hij , Uij ,Wij ) such that
hij (Uij ) ( B′ for all j. By replacing ((hi, Ui,Wi))i∈N with this subsequence,
we assume that each term of ((hi, Ui,Wi))i∈N is such that hi(Ui) ( B′.

Since diam(B′) ≤ d−2, there exists g ∈ AAut(Td,k) such that Sm is admis-
sible for g, g is the identity on B, and g does not act like an isometry on B′.
The element ghig

−1 does not act as an isometry on g(Ui) = Ui, so Lemma 5.4
ensures that ghig

−1 /∈ H. For j > i, we further have that Uj (Wi and that

hi fixes Wi pointwise, and thus, ghjh
−1
i g−1 does not act as an isometry on

Uj . Applying Lemma 5.4 again, we deduce that ghjh
−1
i g−1 /∈ H.

Each ghig
−1 thus gives a distinct right coset of H. Hence,

|gHg−1 : gHg−1 ∩H| = |H : H ∩ g−1Hg|

is infinite, showing that H is not commensurated. �

We will also make use of a weak version of a breaking sequence. Set
Ki+1 := Stab(Si+1) \ Stab(Si). Recalling that we fixed an embedding of
Td,k into the oriented plane, the spheres of Td,k admit a linear ordering. For
each spherical partition Sn, let Rn and Sn be the parts corresponding to
the penultimate and final elements of the ordering of the n-sphere of Td,k,
respectively. Observe that Rn+1, Sn+1 ⊂ Sn.

Lemma 5.7. Suppose that H is a non-compact locally elliptic subgroup
which contains Aut(Td,k). There is then an infinite I ⊆ N where for each
n ∈ I, there is z ∈ H∩Kn such that z fixes pointwise Sn and z(Rn)∩Sn−1 =
∅.

Proof. Via Lemma 5.4, each element of H is an element of some Stab(Sn).
Since H is non-compact, there can be no upper bound on the least n such
that h ∈ Stab(Sn) as h ranges over H. It follows there is an infinite set
I ⊆ N such that H ∩Kn ̸= ∅ for all n ∈ I.

Fix n ∈ I and take z ∈ H ∩Kn. Since z is not an element of Stab(Sn−1),
we may find C ∈ Sn−1 and B ̸= D in Sn with B,D ⊂ C such that z(B) and
z(D) lie in different parts of Sn−1. Multiplying by an appropriate element
of Aut(Td,k), we may take C = Sn−1 and B = Sn. We may further find
u ∈ Aut(Td,k) such that uz fixes Sn pointwise. The element uz is thus such
that uz is an element of Kn, it fixes Sn pointwise, and there is D ⊆ Sn−1

with D ∈ Sn such that uz(D) ∩ Sn−1 = ∅. The group Aut(Td,k) acts as the
full symmetric group on the parts of Sn below Sn−1, so there is v ∈ Aut(Td,k)
such that v(Rn) = D and v fixes Sn pointwise. The element uzv now satisfies
(2). �

Definition 5.8. For n ≥ 1 and H ≤ AAut(Td,k), a triple (z,Rn, Sn) where
z ∈ H ∩ Kn fixes pointwise Sn and z(Rn) ∩ Sn−1 = ∅ is called a weakly
breaking triple for H.
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Each z ∈ Ki+1 acts as a homothety on Si+1 by the definition of Stab(Si+1).
The almost automorphism z in a weakly breaking triple (z,Ri+1, Si+1) there-
fore acts as a homothety on Ri+1.

Given a locally elliptic non-compact subgroup H containing Aut(Td,k),
Lemma 5.7 supplies a sequence of weakly breaking triples (zn, Rn, Sn) where
zn ∈ H for all n ∈ I. We stress that there is no a priori reason for this
sequence or any subsequence to be a breaking sequence.

Let us first observe an easy consequence of commensuration. The next
lemma does not rely on any special property of weakly breaking triples. It
uses only that |H : H ∩ gHg−1| is finite.

Lemma 5.9. Let H ≤ AAut(Td,k) and take g ∈ AAut(Td,k) which commen-
surates H. There is then a finite set Z of weakly breaking triples for H and
N ≥ 2 such that for all weakly breaking triples (h,Rk, Sk) with k ≥ N and
h ∈ H, there is (z,Ri, Si) ∈ Z for which hz−1 ∈ H ∩ gHg−1.

Proof. We recursively build the set Z of weakly breaking triples. Take n1 ∈
N \ [0, 2] least such that (z1, Rn1 , Sn1) is a weakly breaking triple with z1 ∈
H. Suppose that we have built our sequence up to k. If every weakly
breaking triple (y,Rm, Sm) for m ∈ N \ [0, nk] and y ∈ H is such that
yz−1

i ∈ H ∩ gHg−1 for some 1 ≤ i ≤ k, we stop. Else, find nk+1 least in
N \ [0, nk] such that there is a weakly breaking triple (zk+1, Rnk+1

, Snk+1
)

with zk+1 ∈ H and zk+1z
−1
i /∈ H ∩ gHg−1 for all 1 ≤ i ≤ k.

Our construction produces a set Z of weakly breaking triples, and each
group element z appearing in a triple in Z gives a distinct right coset of
H ∩ gHg−1 in H. Since |H : H ∩ gHg−1| is finite, the set Z is finite, and
thus, our construction procedure halts. That is to say, there is N ≥ 2 such
that for any k ≥ N and any weakly breaking triple (h,Rk, Sk) with h ∈ H,
we have that hz−1 ∈ H ∩ gHg−1 for some (z,Ri, Si) ∈ Z. �

We now emphasize an important fact about weakly breaking triples:
If (a,Ri, Si) and (b, Rj , Sj) are weakly breaking triples with j > i, then
(ba,Rj , Sj) is a weakly breaking triple. In particular, in the setting of
Lemma 5.9, if (h,Rk, Sk) is weakly breaking with k ≥ N and (z,Ri, Si) ∈ Z,
then the triple (hz−1, Rk, Sk) is weakly breaking.

5.2.2. Main theorem. We are now ready to prove the main theorem of this
section. We shall use a general fact, which we leave as an exercise for the
reader: There is an element g ∈ AAut(Td,k) admitting S2 as an admissible
partition such that g(Sn) = Sn+1 and g(Rn) = Rn+1 for all n ≥ 2. Such an
element is called a translation down the rightmost branch.

Theorem 5.10. If H ≤ AAut(Td,k) is locally elliptic, commensurated, and
Aut(Td,k) ≤ H, then H is compact.

Proof. Suppose toward a contradiction that H is non-compact. Fix g ∈ G
a translation down the rightmost branch and let Z and N ≥ 2 be as given
by Lemma 5.9. We will abuse notation and consider Z ⊆ H. In view of
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Lemma 5.7, for each k ≥ N there are infinitely many weakly breaking triples
of the form (y,Rl, Sl) with l ≥ k and y ∈ H; we will often implicitly use this
fact.

For balls B and D in ∂Td,k, define δ(B,D) to be the greatest l such that
B,D ⊆ Sl; this function is only partially defined. The partial function δ
allows us to find weakly breaking triples which cohere as follows.

Claim. For all l > N , there is k > l and w ∈ H such that (w,Rk, Sk) is a
weakly breaking triple for H with w(Rk) ⊂ Rl.

Proof of claim. In view of Lemma 5.6, there is k > l and a weakly breaking
triple (h,Rk, Sk) with h ∈ H such that h(Rk) ⊆ Sl−1; else we can produce an
infinite sequence breaking for Sl−1. Take k ≥ l to be least for which there is
such a weakly breaking triple. Note that k > l and that δ(h(Rk), Rk) ≥ l−1.

Since k > N , there is z ∈ Z such that hz−1 ∈ H ∩ gHg−1, and by
construction, (hz−1, Rk, Sk) is a weakly breaking triple. Taking x ∈ H such
that hz−1 = gxg−1, that g is a shift down the rightmost branch implies
(x,Rk−1, Sk−1) is a weakly breaking triple. The minimality of k ensures
that x(Rk−1) * Sl−1, hence

δ(x(Rk−1), Rk−1) = δ(h(Rk), Rk)− 1 ≤ l − 1.

We deduce that δ(h(Rk), Rk) = l − 1.
The ball h(Rk) is thus contained in some B ∈ Sl such that B ⊆ Sl−1 and

B ̸= Sl. Since Aut(Td,k) acts as the full symmetric group on the parts of
Sl contained in Sl−1, there is t ∈ Aut(Td,k) such that t(B) = Rl and t fixes
pointwise Sl. The triple (th,Rk, Sk) therefore satisfies the claim. �

Applying the claim repeatedly, we can find an infinite sequence (ni)i∈N
such that (wi, Rni , Sni) is a weakly breaking triple for H and wi+1(Rni+1) ⊆
Rni for all i ∈ N. The sequence ((w1 . . . wi, Rni , Sni))i>0 is then an infinite
breaking sequence for Sn1 with w1 . . . wi ∈ H for all i. This is absurd in
view of Lemma 5.6. �

6. Commensurated subgroups of groups almost acting on trees

Using our results from the previous sections, we now obtain our results
for commensurated subgroups of groups of almost automorphisms.

6.1. Commensurated subgroups of AAut(Td,k).

Theorem 6.1. If Λ ≤ AAut(Td,k) is commensurated, then either Λ is finite,

Λ is compact and open, or Λ = AAut(Td,k).

Proof. Suppose that Λ is not finite. If Λ contains a translation, then one
must have Λ = AAut(Td,k) thanks to Theorem 5.3. We thus suppose that
Λ is elliptic, which is equivalent to asserting that Λ is locally elliptic by
Corollary 3.6. Proposition 2.10 gives a locally elliptic, commensurated sub-
group H such that Aut(Td,k) ≤ H and |Λ : Λ ∩ H| is finite, and applying
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Theorem 5.10 to H, we deduce that H must be compact. The subgroup Λ
is thus relatively compact.

The closure Λ is commensurated via Lemma 2.7, so we infer that Λ is
an infinite compact commensurated subgroup. As the group AAut(Td,k) is
abstractly simple, we are in position to apply Theorem 2.11 to conclude that
Λ is a compact open subgroup. �
6.2. Thompson’s groups. We here restrict ourselves to the case d = k = 2
for ease of discourse, but the results can be easily adapted to the (commu-
tator subgroups of the) groups Fd,k, Td,k, and Vd,k.

Proposition 6.2. Every commensurated subgroup of Thompson’s group F
is a normal subgroup of F .

Proof. Suppose that Λ is a non-trivial commensurated subgroup of F . Since
every non-trivial element of F is a translation, Theorem 5.3 implies that Λ
contains the derived subgroup of F and is therefore normal in F . �
Proposition 6.3. Every commensurated subgroup Λ of T is either finite or
equal to T .

Proof. If the group Λ contains a translation, then Theorem 5.3 implies that
Λ must be equal to T . We thus suppose that Λ is an elliptic subgroup.

Since Λ contains no translations, Corollary 3.7 implies every finitely gen-
erated subgroup of Λ is finite, and hence cyclic since Λ ≤ T . In particular, Λ
is abelian and locally cyclic. Taking the primary decomposition Λ =

⊕
Λp,

each Λp is either a Prüfer p-group or a finite cyclic p-group.
Suppose first that there is a prime p such that Λp is a Prüfer p-group.

The group Λp thus has no proper finite index subgroup. Since Λ is commen-
surated in T , we infer that Λp ≤ Λ ∩ gΛg−1 for every g ∈ T . In particular,
Λ contains a non-trivial normal subgroup of T , which is absurd because T
is simple.

It is thus the case that Λp is finite cyclic for every prime p, i.e. Λ is a direct
sum of finite cyclic p-groups. Combining this decomposition with the fact
that Λ is commensurated, every g ∈ T must indeed normalize a, necessarily
finite index, subgroup of Λ of the form

⊕
p∈π Λp where π includes all but

finitely many primes. Since T is finitely generated, we deduce the existence
of a finite index subgroup Λ′ of Λ that is normalized by T . The group T is
simple, so Λ′ = 1. Therefore, Λ is finite. �
Proposition 6.4. Every proper commensurated subgroup of V is locally
finite.

Proof. A proper commensurated subgroup of V must contain only elliptic
elements by Theorem 5.3, and such a subgroup must be locally finite via
Corollary 3.7. �

Propositions 6.2 and 6.3 give a complete description of the commensu-
rated subgroups of Thompson’s groups F and T . Although Proposition 6.4
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establishes some restrictions for the commensurated subgroups of V , we are
not able to obtain a complete classification.

There does exist an infinite commensurated subgroup in V , namely the
group of finitary automorphisms of the tree T2,2; see [13, Example 6.7, Propo-
sition 7.11]. The group V thus has at least three commensurability classes
of commensurated subgroups: the trivial group, the group of finitary auto-
morphisms of T2,2, and the entire group V . We thus arrive at an interesting,
open question.

Question 6.5. Does Thompson’s group V have more than three commen-
surability classes of commensurated subgroups?

Thanks to the process of Schlichting completion [19], a related problem
is the following:

Question 6.6. Are there non-discrete locally compact groups other than
AAut(T2,2) into which Thompson’s group V embeds densely ?

The combination of Theorem 5.3 and Corollary 3.6 may be applied to
other interesting finitely generated subgroups of AAut(Td,k). One example
of such a group is the finitely presented simple group VG containing the
Grigorchuk group G constructed by C. Röver [17]. Theorem 5.3 shows any
proper commensurated subgroup Λ � VG contains only elliptic elements, and
Corollary 3.6 implies that any finitely generated subgroup of Λ sits inside
some permutational wreath product G ≀ Sym(n). In particular, since G is a
torsion group, it follows that Λ is torsion.

Question 6.5 can be posed for the group VG . Since the Grigorchuk group is
commensurated in VG [17] (see also [13, Proposition 7.11]), there are at least
three commensurability classes of commensurated subgroups in VG . We do
not know whether there are more than three.

7. Applications

Our study of commensurated subgroups concludes by considering several
applications. We first study embeddings into t.d.l.c. groups.

Proposition 7.1. Let G be a t.d.l.c. group such that every proper commen-
surated open subgroup of G is compact. Then every continuous homomor-
phism φ : G→ H with H a t.d.l.c. group has closed image.

Proof. Choose a compact open subgroup U of H and consider φ−1(U) in G.
Since the preimage of a commensurated subgroup remains commensurated,
φ−1(U) is commensurated in G. By continuity, φ−1(U) is open, so it must
be either compact or equal to G. If φ(G) ≤ U for every U , then one has
φ(G) = 1 since compact open subgroups form a basis at 1. Otherwise there
is U such that φ−1(U) is compact, and

φ(φ−1(U)) = U ∩ Im(φ)

is compact. The image Im(φ) is thus closed, and the desired result follows.
�
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Via Theorem 1.6, the group AAut(Td,k) satisfies the assumption of Propo-
sition 7.1.

Corollary 7.2. Every continuous homomorphism φ : AAut(Td,k) → H with
H a t.d.l.c. group has closed image.

We emphasize that there are generalizations of the group AAut(Td,k) for
which Corollary 7.2 does not hold. For a permutation group D ≤ Sym(d),
we set W (D) to be the natural profinite completion of the iterated per-
mutational wreath products of copies of D. The group AAutD(Td,k) is
then defined to be the subgroup of AAut(Td,k) consisting of almost au-
tomorphisms acting locally by an element of W (D). When D is trivial,
AAutD(Td,k) is the Higman-Thompson group Vd,k. When D = Sym(d), we
have AAutD(Td,k) = AAut(Td,k). The group AAutD(Td,k) further admits a
locally compact group topology. We refer to [7] for more details; see also [13]
and [18]. Corollary 7.2 does not hold in general for the groups AAutD(Td,k).
Indeed, the embeddings AAutD(Td,k) ↪→ AAut(Td,k) are continuous and
have dense image since AAutD(Td,k) always contains Vd,k, which is dense in
AAut(Td,k). Corollary 7.2 thus fails when D is not equal Sym(d).

Proofs of Corollaries 1.10 and 1.9. According to Proposition 6.3, the as-
sumption of Proposition 7.1 also holds true for the group T . Since any
countable closed subgroup of a locally compact group must be discrete, this
shows that any embedding of the group T into a t.d.l.c. group must have
discrete image. This proves Corollary 1.10.

The proof of Corollary 1.9 follows the same lines. By applying Proposition
6.2, we obtain that any embedding of F into a t.d.l.c. group H must have
discrete image. Since F is torsion-free, this implies that F must intersect
trivially any compact open subgroup of H. �

For our second application, we consider lattice embeddings. Lattice em-
beddings of discrete groups are of particular interest; cf. [1]. Our results
place additional restrictions on such embeddings for Thompson’s group T .

Recall that by work of V. P. Platonov [16], every locally compact group
admits a unique maximal locally elliptic normal subgroup, called the locally
elliptic radical. This subgroup is also closed.

Theorem 7.3. Suppose that G is a compactly generated locally compact
group admitting T as a lattice and denote by R the locally elliptic radical of
G. Then R is compact, G/R is a t.d.l.c. group with a unique minimal non-
trivial closed normal subgroup H, and H satisfies the following properties:

(1) H is a compactly generated topologically simple t.d.l.c. group;
(2) H is cocompact in G/R and contains T as a lattice.

Proof. We first show that the connected component G◦ is compact. Let
O ≤ G be an open subgroup of G such that O/G◦ is compact. The group
O is a commensurated open subgroup of G, since it is the preimage of a
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compact open subgroup under the projection G→ G/G◦. Suppose for con-
tradiction that O is not compact. That T is a lattice implies O∩T is infinite,
and furthermore, O∩T is a commensurated subgroup of T . Applying Propo-
sition 6.3, we deduce that T ≤ O. The quotient O/G◦ is a profinite group,
and since T admits no finite quotients, we indeed have T ≤ G◦. This is
absurd, since finitely generated infinite simple groups are never lattices in
connected locally compact groups. The connected component of G is thus
compact. By passing to G/G◦, we assume that G is a t.d.l.c. group.

Let U ≤ G be a compact open subgroup and let N E G be a non-
compact closed normal subgroup. Applying Lemma 2.6, the subgroup UN
is a commensurated subgroup of G. Proposition 6.3 thus implies that in
fact T ≤ UN . Letting (Ui)i∈I be a basis at 1 of compact open subgroups,
it follows that T ≤

∩
i∈I UiN = N . The quotient G/N is therefore a locally

compact group which admits an invariant probability measure, and thus, it
is a compact group. We deduce that every non-compact normal subgroup
of G is cocompact in G and contains T . In particular, the locally elliptic
radical R E G is compact. Indeed, if R is cocompact in G, then G is locally
elliptic via [16], so T is a torsion group, which is absurd.

Setting G′ := G/R, the group G′ has no non-trivial compact normal
subgroups, and applying the previous paragraph, all non-trivial normal sub-
groups of G′ are cocompact in G′ and contain T . ConsiderH the intersection
of all non-trivial closed normal subgroups of G′. The group H contains T
and is thus a non-trivial cocompact normal subgroup of G′. It remains to
show that H is topologically simple. Take N a non-trivial closed normal
subgroup of H. The subgroup N cannot be compact, since otherwise G′ has
a non-trivial locally elliptic radical. The above argument thus ensures that
N contains T and is cocompact in H. The intersection K of all non-trivial
closed normal subgroups of H is then a non-trivial characteristic subgroup
of H. By our choice of H, we deduce that K = H, and a fortiori, N = H.
That is to say, H is topologically simple. �
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