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Abstract. We study the commensurators of free groups and free pro-p groups, as well as
certain subgroups of these. We prove that the commensurator Comm(F ) of a non-abelian
free group of finite rank F is not virtually simple, answering a question of Lubotzky. On
the other hand, we exhibit a family of easy-to-define finitely generated subgroups of
Comm(F ) and show that some groups in this family are simple.

For a prime p, we also consider the p-commensurator Commp(F ), which is the com-
mensurator of F viewed as a group with pro-p topology. By contrast with Comm(F ),
we prove that Commp(F ) has a simple subgroup of index at most 2. Further, while
the isomorphism class of Comm(F ) does not depend on the rank of F , we prove that
the isomorphism class of Commp(F ) depends on the rank of F and determine the exact
dependency.

If F is the pro-p completion of F (which is a free pro-p group), Comm(F) is a totally
disconnected locally compact (tdlc) group containing F as an open subgroup. We use
Commp(F ) to construct an abstractly simple subgroup of Comm(F) containing F as well
as a family of non-discrete tdlc groups which are compactly generated and simple.
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1. Introduction

1.1. Motivation and overview. Let G be an abstract group. The commensurator of G
is a natural variation of the automorphism group Aut(G). Instead of automorphisms, one
considers virtual isomorphisms of G, that is, isomorphisms between finite index subgroups
of G. While in general one cannot compose two virtual automorphisms of G, the problem
goes away if we replace virtual automorphisms by their equivalence classes where two
virtual automorphisms are equivalent if they coincide on a finite index subgroup. The
equivalence classes of virtual automorphisms of G are called commensurations of G. They
form a group (with respect to composition) called the commensurator of G and denoted
by Comm(G).

Historically, the groups Comm(G) were first introduced in connection with relative
commensurators. By definition if G is a subgroup of a group L, the relative commensurator
of G in L is the subgroup CommL(G) consisting of all g ∈ L such that G and gGg−1 are
commensurable, and in such situation there is a natural homomorphism CommL(G) →
Comm(G). Relative commensurators play an important role in the study of discrete
subgroups of Lie groups. A key theorem in that realm is Margulis arithmeticity criterion
which asserts that if G is an irreducible lattice in a connected semi-simple Lie group L
with trivial center and no compact factor, then G is arithmetic if and only if CommL(G)
is a dense subgroup of L [Mar91].

If G is a profinite group, one defines Comm(G) in the same way replacing finite index
subgroups by open subgroups and requiring that virtual automorphisms are continuous.
Commensurators of profinite groups play a key role in understanding the connection be-
tween the structure of totally disconnected locally compact groups (tdlc hereafter) and
their compact open subgroups (which are profinite). Indeed, if L is a tdlc group, the com-
pact open subgroups of L form a base of neighborhoods of the identity, and for any such
subgroup G there is a natural homomorphism L → Comm(G) induced by conjugation.
We refer the reader to subsection 1.6 for details.

If G is an abstract (resp. profinite) group, there is a natural homomorphism i : G →
Comm(G) which sends each g ∈ G to the class of the corresponding inner automorphism.
Its kernel is the set of all g ∈ G which centralize a finite index (resp. open) subgroup of
G. There are many important cases where Comm(G) is equal to i(G) or at least contains
i(G) as a subgroup of finite index. Examples include non-arithmetic irreducible lattices
in connected semisimple Lie groups with trivial center and no compact factor ̸= PSL2(R)
[Mar91], mapping class groups of surfaces [Iva97], outer automorphism groups of free
groups [FH07, HW20] and automorphism groups of free groups [BW24].

In this paper we will focus on groups which are on the opposite end of the spectrum
in terms of their commensurator size – non-abelian free groups and free pro-p groups
of finite rank. If F is one of those groups, the automorphism group Aut(F) is already
much larger than F . And the commensurator Comm(F) is substantially larger than
Aut(F) because it contains subgroups isomorphic to Aut(F ′) for free (abstract or pro-
p) groups F ′ of arbitrarily large rank. Further, F contains plenty of isomorphic finite
index subgroups (as any two subgroups of F of the same finite index are isomorphic), and
Comm(F) contains an isomorphism between any two such subgroups. One testament to
the complexity of the structure of Comm(F ) for a non-abelian free group F is a theorem of
Bering and Studenmund [BS24] asserting that every countable locally finite group embeds
into Comm(F ).
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It is well known that for any finitely generated residually finite group G, its automor-
phism group Aut(G) is residually finite. By contrast, there are classical situations where
the commensurator is close to being simple. For instance, the latter happens if G = Zd, in
which case Comm(G) ∼= GLd(Q). Other more involved examples are the groups of integer
points LZ of a connected semi-simple group L defined over Q, whose relative commensu-
rator in L is, under mild assumptions on L, equal to LQ [Bor66], which is often close to
being a simple group [Tit64]. One of the main goals of this paper is to determine whether
free groups enjoy a similar behavior. More precisely, we will study the simplicity question
for the commensurator Comm(F) as well as for certain subgroups of Comm(F), where as
above F is either a free group or a free pro-p group.

1.2. Commensurators of free groups. Here and throughout the paper, we use the no-
tation F to denote a non-abelian free group of finite rank. Since all non-abelian free groups
of finite rank are virtually isomorphic to each other, the isomorphism class of Comm(F )
does not depend on the rank of F . To the best of our knowledge, the group Comm(F ) was
first explicitly considered in a 2010 paper of Bartholdi and Bogopolski [BB10] where in
particular it was proved that Comm(F ) is not finitely generated. However, there is another
group related to Comm(F ) whose study goes back to at least early 1990s – the relative
commensurator of F inside the automorphism group of the Cayley tree T of F . The group
F sits as a uniform lattice in Aut(T ), and its relative commensurator CommAut(T )(F )
plays a key role in the general theory of tree lattices – see [BK90], [LMZ94] and [Cap20]
for many important results and questions about this group. In particular, it is asked in
[LMZ94, Remarks 2.12(i)] whether a certain index two subgroup of CommAut(T )(F ) is
simple.

The question whether the full commensurator Comm(F ) is simple appears as Prob-
lem 20.7.2 in [CM18], where it is attributed to Lubotzky. Some evidence towards a positive
answer was obtained by Caprace in [Cap20, Theorem A.2]. A group G is called monolithic
if the intersection of all non-trivial normal subgroups of G is non-trivial; if this is the
case, this intersection is called the monolith of G and denoted Mon(G). Caprace proved
that Comm(F ) is monolithic, Mon(Comm(F )) contains a finite index subgroup of F , and
Mon(Comm(F )) is simple [Cap20, Theorem A.2].

Our first main theorem (Theorem A below) implies that while Mon(Comm(F )) is indeed
a very large subgroup of Comm(F ), it is not the entire Comm(F ) or even a finite index
subgroup of it. In particular, the answer to the aforementioned question of Lubotzky is
negative.

Definition 1.1. Given an abstract group G, we define AComm(G) to be the subgroup of
Comm(G) generated by the canonical images of the groups Aut(H) where H ranges over
all finite index subgroups of G.

As we will see, the subgroup AComm(G) is normal in Comm(G) under very mild as-
sumptions on G (see Lemma 2.22(b)) – in particular, this is the case if G is finitely
generated. Further, under some natural conditions on G which hold, for instance, if G is
free, the canonical map Aut(H) → Comm(G) is injective for any finite index subgroup
H (see Lemmas 2.10 and 2.11). In this case we will identify Aut(H) with its image in
Comm(G).

We are now ready to state our first main theorem.

Theorem A. Let F be a non-abelian free group of finite rank. The following hold:
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(1) AComm(F ) is simple and is equal to the monolith of Comm(F ).
(2) AComm(F ) has infinite index in Comm(F ). In particular, Comm(F ) is not vir-

tually simple.

Part (1) strengthens the result of Caprace stated above. Our proof of (1) does not rely
on [Cap20, Theorem A.2] and uses a completely different approach based on the free factor
theorem of M. Hall. We will deduce part (2) from a more general result applicable to other
classes of groups, including non-abelian surface groups – see Theorems 5.5 and 5.6.

1.3. New finitely generated simple groups. As a general rule, constructing simple
groups is a more challenging task if the groups are required to be finitely generated. In
this paper we will use commensurators to exhibit a new family of finitely generated infinite
simple groups. The construction is entirely elementary.

Definition 1.2. Let F be a free group and m ≥ 2. Let Am(F ) be the subgroup of
Comm(F ) generated by the subgroups Aut(H) where H ranges over normal subgroups of
F such that F/H is cyclic of order m.

By definition Am(F ) is a subgroup of AComm(F ). By a classical theorem of Nielsen,
the automorphism group of a finitely generated free group is finitely generated. Since F
has only a finite number of subgroups of a given index, it follows that Am(F ) is a finitely
generated group. In section 6 we will define a certain subgroup Sm(F ) of Am(F ) which
contains F and has index at most 2 (so Sm(F ) is still finitely generated).

Theorem B. Let m ≥ 2, and let Fd be a free group of rank d ≥ 2. Then there exist
infinitely many values of d such that the finitely generated group Sm(Fd) is simple.

We refer the reader to Theorem 6.7 for a more precise statement. The restriction on the
rank in Theorem B appears to be a technical limitation, and we believe that the statement
is possibly true for every m ≥ 2 and every d ≥ 2 – see Remark 6.9.

As we already mentioned, the group Comm(F ) is not finitely generated [BB10]. The
subgroup AComm(F ) is not finitely generated either [Cap20, Theorem A.2]. The first
examples of infinite finitely generated simple groups embeddable in Comm(F ) have been
constructed by Burger and Mozes [BM00b]. These groups act properly and cocompactly
on the product of two trees, in such a way that the action on each factor is not proper.
Equivalently, they are cocompact irreducible lattices in the automorphism group of the
product of two trees. We refer to the recent survey [Cap19] for an extensive discussion
on these groups. To the best of our knowledge, prior to this work, irreducible lattices
in products of trees was the only source of examples of finitely generated infinite simple
subgroups of Comm(F ). The groups Sm(F ) are of very different nature than irreducible
lattices in product of trees. For instance, they cannot act properly and cocompactly by
isometries on a complete CAT(0) space – see Remark 6.8.

1.4. On the p-commensurator of free groups. As before, let F be a non-abelian free
group of finite rank. The pro-p topology on F is the topology for which a base of open
neighborhoods of an element x ∈ F is given by cosets of the form xN where N ranges over
the normal subgroups of F of finite p-power index. We will say that a subgroup of F is p-
open if it is open in the pro-p topology. The p-commensurator of F , denoted Commp(F ),
is defined similarly to the commensurator of F , except that finite index subgroups are
replaced by p-open subgroups (see Definition 2.15). There is a natural homomorphism
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Commp(F ) → Comm(F ), and this homomorphism is injective (Lemma 2.14). It will often
be convenient to identify Commp(F ) with its image in Comm(F ).

The group Commp(F ) was considered by Bou-Rabee and Young in [BY20] in connec-
tion with the study of representations of Baumslag–Solitar groups in Comm(F ). The
paper [BY20] also posed several interesting questions very relevant to our work.

We will establish several results showing that in many ways Commp(F ) behaves differ-
ently from Comm(F ) and that Commp(F ) may be easier to understand than Comm(F ).
First, similarly to the case of Comm(F ), we can consider the subgroup of Commp(F )
generated by all subgroups Aut(U) where U now ranges over all p-open subgroups of F .
But in contrast with Theorem A(2), we will show that this subgroup is actually equal
to Commp(F ) – see Proposition 7.3. Morever, we will show that the p-commensurator
Commp(F ) is virtually simple:

Theorem C. Let F be a non-abelian free group of finite rank. Then Commp(F ) contains
a simple subgroup of index at most two.

We refer the reader to Theorem 9.1 and discussion preceding it for a more general
statement and the definition of the simple group from Theorem C.

The second key difference that we establish between Comm(F ) and Commp(F ) is the
dependency on the rank of the free group. As mentioned earlier, the isomorphism class
of Comm(F ) does not depend on the rank of F since finitely generated non-abelian free
groups are all virtually isomorphic to each other. The situation for the p-commensurator
appears to be more subtle. It is a consequence of the Nielsen-Schreier formula that two
free groups Fk and Fℓ of ranks k, ℓ ≥ 2 sit as p-open subgroups in a common free group F
if and only if (k−1)/(ℓ−1) = ps for some s ∈ Z. When this condition holds, it is not hard
to see that the embeddings of Fk and Fℓ as p-open subgroups of F induce isomorphisms
Commp(Fk) → Commp(F ) and Commp(Fℓ) → Commp(F ), so that the groups Commp(Fk)
and Commp(Fℓ) are isomorphic. Theorem D below asserts that

(i) distinct primes always give rise to non-isomorphic groups Commp(F ) and
(ii) that when p is fixed, the above condition on k and ℓ actually characterizes when

Commp(Fk) and Commp(Fℓ) are isomorphic.

This theorem solves a question raised in [BY20].

Theorem D. Let p, q be prime numbers, let k, ℓ ≥ 2, and let Fk and Fℓ be free groups of
ranks k and ℓ, respectively. Then the groups Commp(Fk) and Commq(Fℓ) are isomorphic

if and only if p = q and there exists s ∈ Z such that k−1
ℓ−1 = ps.

Our strategy for proving Theorem D also provides information on automorphisms of
the p-commensurator. We prove the following:

Theorem E. Let F be a non-abelian free group of finite rank. Then the group Commp(F )
has trivial outer automorphism group.

1.5. Commensurators of free pro-p groups. Again let p be a prime number, and let
F be a non-abelian free pro-p group of finite rank. If F is a free group of the same rank,
we can consider F as the pro-p completion of F [RZ00, Proposition 3.3.6]. Since F is
residually-p, the canonical map F → F is injective, so we can view F as a subgroup of
F. There is also a natural bijection between p-open subgroups of F and open subgroups
of F, which maps a p-open subgroup of F to its closure in F (the inverse map is given
by the intersection with F ). Using this bijection, it is routine to extend the embedding



6 BARNEA, ERSHOV, LE BOUDEC, REID, VANNACCI, AND WEIGEL

F → F to an injective homomorphism Commp(F ) → Comm(F), and thus we can also
view Commp(F ) as a subgroup of Comm(F). We note that however there is no natural
homomorphism Comm(F ) → Comm(F).

It is natural to expect some similarities between Commp(F ) and Comm(F), and as
the first indication of this, we will show that Comm(F) is generated by the subgroups
Aut(U) where U ranges over open subgroups of F – see Proposition 7.7. We will also
build on Theorem C to construct an analogous abstractly simple subgroup of Comm(F)
– see Theorem F below.

The group Comm(F) admits a tdlc group topology, for which F is a compact open
subgroup of Comm(F), and such that the induced topology on F is the original topology
on F. Let Cp(F) be the closure of Commp(F) in Comm(F). Since Commp(F) contains F
and F is dense in F, the group Cp(F ) is equal to the subgroup of Commp(F) generated by
F and Commp(F ). In particular, Cp(F ) is open in Comm(F).

Theorem F. Let F be a non-abelian free group of finite rank and let F be its pro-p
completion. Then the open subgroup Cp(F ) of Comm(F) has a subgroup of index at most
two that is abstractly simple.

Similarly to the case of the p-commensurator, we will prove a slightly stronger statement
– see Theorem 9.8.

We note that the group Cp(F ) is much smaller than the entire commensurator Comm(F).
Indeed, since Commp(F ) is a countable group and Commp(F ) commensurates F, the
subgroup F has countable index in Cp(F) = ⟨F,Commp(F )⟩. On the other hand, already
the index [Aut(F) : F] is uncountable.

The question whether Comm(F) is abstractly simple or at least topologically simple
(with respect to the above tdlc topology) is mentioned in [CM18, p. 349]. We were unable
to answer either question. Nevertheless, we will show that Comm(F) is monolithic and its
monolith is abstractly simple:

Theorem G. Let F be a non-abelian free pro-p group of finite rank. Then the group
Comm(F) is monolithic, Mon(Comm(F)) contains F, and Mon(Comm(F)) is abstractly
simple.

Unlike the case of free (abstract) groups, we do not have a very transparent description
of Mon(Comm(F)), but we will obtain additional information about Mon(Comm(F)),
beyond the statement of Theorem G – see Proposition 9.12. In particular, we will prove
that the index [Mon(Comm(F)) : F] is uncountable.

1.6. New compactly generated simple tdlc groups and embedding free pro-p
groups into such groups. A prominent theme in the theory of tdlc groups is under-
standing the relationship between the global properties of a tdlc group L and its local
properties, that is, properties of its compact open subgroups – for some important re-
sults see [BM00a, Wil07, BEW11, CDM11, CS15, CRW17]. The connection between
these global and local properties is particularly tight under the extra hypotheses that L is
compactly generated and topologically simple – see for instance [BEW11, Theorem 4.8],
[CRW17, Theorem 5.3], [CRW17, Theorem J], [CLB19, Theorem F]. While the topological
simplicity assumption can very often be relaxed, the compact generation assumption is
usually crucial.

The following question originally arose from [BEW11] and is recorded in [CM18, Prob-
lem 20.5.2] and part 2 of [KM18, Problem 19.10].
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Question 1. Let F be a non-abelian free pro-p group of finite rank. Does there exist a
compactly generated topologically simple group L which contains F as an open subgroup?

As we already explained, for any group L answering Question 1 there is a homomorphism
ιL : L→ Comm(F) whose image contains F (so in particular is open); further, since F has
trivial quasi-center and L is topologically simple, ιL must be an embedding. Thus, when
attempting to solve Question 1 in the positive, there is no loss of generality in restricting
to (compactly generated and topologically simple) subgroups L of Comm(F) containing
F.

Let us now make a small digression and recall that for any m ≥ 2, the finitely generated
group Am(F ) of Comm(F ) from Definition 1.2 has a subgroup Sm(F ) of index at most 2
which is simple for some values of rk (F ) by Theorem B. When m = p is prime, the group
Ap(F ) is actually contained in Commp(F ). So there exists a finitely generated simple
subgroup of Commp(F ) containing F . This result can be viewed as a positive answer to
an analogue of Question 1 for free groups.

From this perspective, the closure L of Sp(F ) in Comm(F), which is also the subgroup of
Cp(F ) generated by F and Sp(F ), appears as a natural candidate for solving Question 1.
We elaborate on this idea in Section 11 and consider a certain ascending sequence of
compactly generated open subgroups (Ln)n≥1 of Cp(F ) starting at L1 = L. We did not
manage to determine whether Ln is simple for all n or at least for all sufficiently large n,
but we will show that the groups Ln are at least not too far from being simple.

Theorem H. Let F be a free group of rank d ≥ 3 and let F be its pro-p completion. Then
there is an ascending sequence (Ln)n≥1 of compactly generated open subgroups of Cp(F)
containing F with the following properties.

(i) The union ∪n∈NLn has index at most two in Cp(F ).
(ii) Let Kn denote the normal core of F in Ln. Then the sequence (Kn)n≥1 is descend-

ing and has trivial intersection.
(iii) The group Ln/Kn admits a non-discrete abstractly simple quotient Qn which has an

open subgroup isomorphic to F (n) = F/Kn. Moreover, the kernel of the projection
Ln/Kn → Qn is discrete.

(iv) The pro-p group F (n) = F/Kn has the following features in common with non-
abelian free pro-p groups:

– every d-generator p-group of order at most pn+1 occurs as a quotient of F (n);
– for all 1 ≤ j ≤ n+ 1 any two subgroups of F (n) of index pj are isomorphic.

(v) For each n the following are equivalent:
– Ln is abstractly simple;
– Kn = {1};
– F (n) is free pro-p.

(vi) If Cp(F) contains any topologically simple compactly generated open subgroup, then
Ln is abstractly simple for all sufficiently large n.

We refer the reader to Section 11 for details. We do not know if the group F (n) is
free pro-p for sufficiently large n. Of course, if the latter is the case, Question 1 would be
solved in the positive. Regardless of whether F (n) is free pro-p or not, we believe that the
groups (Qn) yield a new family of compactly generated simple tdlc groups.

Acknowledgments. We are grateful to Pierre-Emmanuel Caprace for illuminating
discussions and providing useful references.
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Notations. Throughout the paper we will adopt the following notational convention.
First, p will denote a fixed prime. To make the notations transparent, we will always
denote free groups by capital Latin letters in a Roman font and free pro-p groups by capital
Latin letters in a boldface font, with F and F being the default choices. Occasionally we
will make statements which covers both free pro-p and free groups, and in that case we
will use letters in a calligraphic font (usually F).

2. Basic results on commensurators

2.1. The commensurator of a topological group. We start by defining the commen-
surator Comm(G) for a topological group G.

Definition 2.1. Let G be a topological group.

• A virtual isomorphism of G is a topological group isomorphism f : U → V where
U, V are both finite index open subgroups ofG. We also say that the triple (f, U, V )
is a virtual isomorphism.

• Given two virtual isomorphisms fi : Ui → Vi, i = 1, 2, their composition is the
virtual isomorphism

f1 ◦ f2 : f−1
2 (V2 ∩ U1) → f1(V2 ∩ U1) defined by x 7→ f1(f2(x)).

• Two virtual isomorphisms are declared equivalent if they coincide on some finite
index open subgroup.

• The equivalence class of a virtual isomorphism f will be denoted by [f ].

Virtual isomorphisms modulo this equivalence form a group with operation defined by
[f1][f2] = [f1 ◦ f2]. This group is called the commensurator of G and will be denoted by
Comm(G).

If H is a finite index open subgroup of G, then every virtual isomorphism of H is
a virtual isomorphism of G, and the induced homomorphism Comm(H) → Comm(G)
is an isomorphism, so we can identify Comm(H) with Comm(G). More generally, if
two topological groups G1 and G2 are virtually isomorphic1, meaning that they admit
topologically isomorphic finite index open subgroups, then Comm(G1) and Comm(G2)
are isomorphic.

Remark 2.2. In this paper we will only consider the groups Comm(G) in the case where
all open subgroups of G are of finite index.

We will use the following terminology.

Definition 2.3.

(a) Let G be an abstract group. The virtual center VZ(G) is the set of elements g ∈ G
which centralize a finite index subgroup of G 2.

(b) Now let G be a topological group. The quasi-center QZ(G) is the set of elements
g ∈ G which centralize an open subgroup of G.

1We warn the reader that what we call ’virtually isomorphic’ is sometimes called ’abstractly commen-
surable’ or just ’commensurable’. Here we will use the word ‘commensurable’ only in the situations when
both groups are subgroups of the same group – see Definition 2.4.

2Also called FC-center. Here we adopt the terminology ‘virtual center’ as we think of this set as the
elements that act trivially by conjugation on a finite index subgroup, rather than the elements whose
conjugacy class is finite.
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Clearly, VZ(G) is a characteristic subgroup of an abstract group G. Likewise QZ(G)
is a topologically characteristic subgroup of a topological group G (which need not be
closed). For a general topological group G neither of the subgroups VZ(G) and QZ(G)
must contain the other, but for instance QZ(G) = VZ(G) if either G is an abstract group
with profinite topology or a profinite group.

LetG be a topological group. Given g ∈ G, we denote by ig : G→ G the left conjugation
by g, that is, ig(x) = gxg−1. The map i : G → Comm(G) given by i(g) = [ig] is a group
homomorphism. In general, the kernel of i is VZ(G) ∩ QZ(G), the intersection of the
virtual center and the quasi-center. However, we will only consider Comm(G) when every
open subgroup of G has finite index in G, in which case QZ(G) ⊆ VZ(G) and therefore

Ker (i) = QZ(G).

For the rest of the paper we make the standing assumption that when QZ(G) is trivial,
we will usually identify G with i(G) and thus view G as a subgroup of its commensurator
Comm(G).

Definition 2.4. Two subgroups H,K of a group G will be called commensurable if their
intersectionH∩K has finite index in bothH andK. A subgroupH of G is commensurated
in G if any two G-conjugates of H are commensurable.

We will be frequently using this terminology when the group G is equipped with a
topology. We stress that in such situations we are not requiring any extra hypotheses on
H,K and H ∩K with respect to the ambient topology on G.

Lemma 2.5. Let G be a topological group and f : U → V a virtual isomorphism of
G. Then for any [f ] ∈ Comm(G) we have [f ]i(U)[f ]−1 = i(V ). In particular, i(G) is
commensurated in Comm(G).

Proof. The equality [f ]i(U)[f ]−1 = i(V ) is a consequence of the definitions. That i(G) is
commensurated follows because i(U) and i(V ) both have finite index in i(G). □

There is a natural way to equip Comm(G) with a group topology, which relies on the
following classical principle (see e.g. [Bou95, III.2 Proposition 1]):

Proposition 2.6. Let G be a group and O a collection of subgroups of G such that

(1) any finite intersection of elements of O contains an element of O;
(2) for every g ∈ G and O1 ∈ O, there is O2 ∈ O such that O2 ⊆ gO1g

−1.

Then there is a unique group topology τ on G such that O is a base of neighborhoods of
the identity for τ . Moreover, τ is Hausdorff if and only if the intersection of all subgroups
in O is trivial.

Proposition 2.7. Let G be a topological group. Then Comm(G) admits a unique group
topology τ such that there is a base O of neighborhoods of the identity formed by sub-
groups of the form i(U), for U a finite index open subgroup of G. With respect to τ , the
homomorphism i : G→ Comm(G) is continuous and open.

Proof. To establish the existence and uniqueness of τ it is enough to check that O has
property (2) from Proposition 2.6. Given g ∈ Comm(G) and an open subgroupW in G, we
want to show that gi(W )g−1 contains some element of O. Choose a virtual isomorphism
f : U → V of G such that g = [f ] and U ⊆ W . Then g i(W )g−1 ⊇ g i(U)g−1 = i(V )
where the equality holds by Lemma 2.5. □
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For the rest of the paper we always consider Comm(G) being equipped with the topology
from Proposition 2.7, unless explicitly mentioned otherwise.3

The commensurator Comm(G) satisfies the following universal property. For simplicity,
we state it in the special case where G has trivial quasi-center:

Proposition 2.8 (Universal property of Comm(G)). Let G be a topological group with triv-
ial quasi-center. Then G is an open commensurated subgroup of Comm(G). Conversely,
if L is a topological group into which G embeds as an open commensurated subgroup, then
there is a homomorphism ψ : L → Comm(G). Moreover, ψ is continuous, ψ has open
image, and ker(ψ) = QZ(L), which is a discrete normal subgroup of L.

Proof. The first statement follows from the previous discussion. Now suppose L is a
topological group into which G embeds as an open commensurated subgroup. For every
h ∈ L, the subgroups h−1Gh ∩ G and G ∩ hGh−1 are finite index open subgroups of G,
and the conjugation by h induces a virtual isomorphism h−1Gh ∩ G → G ∩ hGh−1 of
G. This defines a homomorphism ψ : L → Comm(G), whose restriction to G is equal
to i : G → Comm(G). Since G is open in L, ψ is continuous, and ψ(L) is open since it
contains i(G). An element of h ∈ L belongs to ker(ψ) if and only if there exists an open
subgroup of G with which h commutes, which precisely means that h ∈ QZ(L). Since
QZ(L) ∩G = QZ(G) = 1, the group QZ(L) is necessarily discrete. □

Given a finite index open subgroup U of a topological group G, any automorphism of
U can be viewed as a virtual isomorphism of G. Thus we have a natural homomorphism
ιU : Aut(U) → Comm(G); we denote its image by Aut(U).

Definition 2.9. We will say that G is Aut-Comm injective if the map ιU is injective for
every open subgroup U of G.

If G is Aut-Comm injective, we will simplify notation again and write Aut(U) instead
of Aut(U), thereby identifying Aut(U) with a subgroup of Comm(G). The following two
simple observations provide two natural conditions on G, either of which implies that G
is Aut-Comm injective and in fact has a slightly stronger property.

Lemma 2.10. Let G be a topological group with trivial quasi-center. Suppose f : U → V is
an isomorphism between two open subgroups of G such that f is the identity on some open
subgroup of G. Then U = V and f is the identity map. In particular, G is Aut-Comm
injective.

Proof. When G is profinite, this was proved in [BEW11, Proposition 2.6]. The proof for
general topological groups is identical. □

Lemma 2.11. Let G be a topological group with the unique root property (if gn = hn for
some g, h ∈ G and n ≥ 1, then g = h). Suppose f : U → V is an isomorphism between
two finite index open subgroups of G such that f is the identity on some open subgroup of
G. Then U = V and f is the identity map. In particular, G is Aut-Comm injective.

Proof. This was proved for abstract groups in [BB10]. The same proof applies to topolog-
ical groups without any changes. □

Remark 2.12. If G satisfies the conclusion of Lemma 2.10, the following more general
property automatically holds: if f : U → V is a virtual isomorphism of G and f ′ : U ′ → V ′

3This topology is called the strong topology in [BEW11], but we will not be using that terminology.
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is a virtual isomorphism of G that is equivalent to f , then the value of f ′ at any point is
determined by f ; in particular, f(g) = f ′(g) for all g ∈ U ∩ U ′.

Our next lemma provides some useful information on the subgroup structure of Comm(G)
in the case where G has trivial quasi-center. Of particular importance to us is part (2)
which will be the starting observation of many of our simplicity theorems.

Lemma 2.13. Let G be a topological group with trivial quasi-center. The following hold:

(1) Any open subgroup of Comm(G) has trivial quasi-center.
(2) Let N be a non-trivial subgroup of Comm(G) whose normalizer in Comm(G) is

open. Then N ∩G is non-trivial.

Proof. (1) The entire Comm(G) has trivial quasi-center by [BEW11, Proposition 3.2(c)].
On the other hand, if U is an open subgroup of a topological group L, then QZ(U) =
QZ(L) ∩ U , so (1) follows.

(2) In this proof, to avoid confusion, we will not identify G with i(G), so our goal is to
show that N∩i(G) is non-trivial. Let [ψ] be a non-trivial element of N . By our hypotheses
there exists an open subgroup U of G such that ψ is defined on U and i(U) normalizes
N . Since QZ(G) = {1}, the restriction of ψ to U is non-trivial by Lemma 2.10, so we can
find g ∈ U such that ψ(g) ̸= g. Then iψ(g)g−1 = iψ(g)i

−1
g = ψigψ

−1i−1
g = ψ · (igψ−1i−1

g ) is
a non-trivial element which lies in both N and i(G). □

Now suppose that τ1 and τ2 are two group topologies on G such that τ1 ⊆ τ2. Ev-
ery virtual isomorphism f of the topological group (G, τ1) is also a virtual isomorphism
of (G, τ2), and f1 ∼ f2 for τ1 implies f1 ∼ f2 for τ2. Thus there is an induced map
Comm((G, τ1)) → Comm((G, τ2)), which is clearly a homomorphism.

Lemma 2.14. Suppose that (G, τ2) has trivial quasi-center. Then the homomorphism
Comm((G, τ1)) → Comm((G, τ2)) is injective.

Proof. If f : U → V is a virtual isomorphism of (G, τ1) whose image in Comm((G, τ2)) is
trivial, then Lemma 2.10 asserts that U = V and f is the identity map, so f has trivial
image in Comm((G, τ1)) as well. □

2.2. The commensurator and the p-commensurator of an abstract group. Let
G be an abstract group. We start by recalling the definitions of the profinite and pro-p
topologies on G. Each of these turns G into a topological group.

• The profinite topology τprof on G is defined by declaring that the finite index
normal subgroups of G form a base of neighborhoods of the identity. Since every
finite index subgroup contains a finite index normal subgroup, the open subgroups
in the profinite topology are precisely the finite index subgroups.

• If p is a prime number, the pro-p topology τp on G is defined by declaring that
the normal subgroups of G of finite p-power index form a base of neighborhoods
of the identity. We say that a subgroup of G is p-open or p-closed if it is open or
closed in the pro-p topology, respectively. It is well known that p-open subgroups
are precisely subnormal subgroups of p-power index.

Definition 2.15. Let G be an abstract group.

• The commensurator of G denoted by Comm(G) is the commensurator of the topo-
logical group (G, τprof ), that is, Comm(G) = Comm((G, τprof)).
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• The p-commensurator of G denoted by Commp(G) is the commensurator of the
topological group (G, τp), that is, Commp(G) = Comm((G, τp)).

More explicitly,

• elements of Comm(G) are isomorphisms between finite index subgroups of G,
modulo being equal on a finite index subgroup. The kernel of i : G → Comm(G)
is QZ((G, τprof )) = VZ(G), the virtual center of G.

• elements of Commp(G) are isomorphisms between p-open subgroups of G, modulo
being equal on a p-open subgroup. The kernel of i : G→ Commp(G) is the set of
elements which centralize a p-open subgroup of G.

In what follows we always endow the groups Comm(G) and Commp(G) with the topol-
ogy from Proposition 2.7. By definition the pro-p topology is coarser than the profinite
topology, so applying Lemma 2.14 to the topological group (G, τprof ) we obtain the fol-
lowing:

Lemma 2.16. Suppose that an abstract group G has trivial virtual center. Then the
natural homomorphism Commp(G) → Comm(G) is injective.

Again let G be an abstract group and p a prime number. We denote by Ĝp the pro-p

completion of G; thus we have a completion map G → Ĝp, which is injective precisely
when G is residually-p (by definition this holds if elements of G can be separated by
homomorphisms to finite p-groups).

Part (3) of the following lemma establishes a natural map from the p-commensurator
of an abstract group to the commensurator of its pro-p completion, which will be used
repeatedly in the paper.

Lemma 2.17. Let G be an abstract group.

(1) If H is a p-open subgroup of G, then the restriction to H of the pro-p topology on
G is equal to the pro-p topology on H.

(2) Given an injective homomorphism θ : H → G with p-open image, θ extends to a

continuous injective open homomorphism θ̂p : Ĥp → Ĝp.

(3) There is a continuous homomorphism φ : Commp(G) → Comm(Ĝp) given by

φ([f ]) = [f̂p].

Proof. For (1) see [RZ00, Lemma 3.1.4(a)]. Part (2) is a standard construction, see [RZ00,

§ 3.2]. The fact that θ̂p is injective follows from part (1) – see [RZ00, Lemma 3.2.6]. In
particular, if H is a p-open subgroup of G and θ : H → G is the inclusion map, then we

may regard Ĥp as an open subgroup of Ĝp via the map θ̂p.

(3) First let us explain why the map φ given by φ([f ]) = [f̂p] is well defined. For this,
it is enough to note that when f : H → K is a virtual isomorphism of G in the pro-p
topology and g is the restriction of f to some p-open subgroup L of H, then ĝp is given

by the restriction of f̂p to L̂p (regarding L̂p as an open subgroup of Ĥp as in the previous
paragraph).

Next we show that φ is a homomorphism. Given f, g ∈ Commp(G), there is an identity

neighborhood U in Ĝp on which the composition f̂pĝ
−1
p is defined, and for all x ∈ G ∩U

we have f̂pĝ
−1
p (x) = (̂fg−1)p(x); by continuity, the same equation holds for all x ∈ U , and

hence [f̂p][ĝp]
−1 = [(̂fg−1)p], showing that φ is a homomorphism.
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Finally, note that {Ĥp : H is a p-open subgroup of G} is a base of neighborhoods of the

identity in Comm(Ĝp), and for each p-open subgroup H of G, the preimage φ−1(Ĥp) is
an open subgroup of Commp(G) since it contains H. It follows that φ is continuous. □

In particular, Lemma 2.17(1) ensures that for a p-open subgroup H of G, we have
Commp(H) = Commp(G). The same is of course true for the profinite topology: if H is
a finite index subgroup of G, then the profinite topology on H agrees with the restriction
to H of the profinite topology on G. We will use these facts frequently without further
mention.

We remark that an equivalent way to say that two subgroups H,K of a group G are
commensurable (Definition 2.4) is that H ∩K is open in the profinite topology on H and
on K. Note that this reformulation involves the profinite topologies on H and K, and not
the profinite topology on G. We make an analogous definition for the pro-p topology.

Definition 2.18. Two subgroups H,K of a group G are p-commensurable if H ∩ K is
a p-open subgroup in H and K. This is an equivalence relation. A subgroup L of G is
p-commensurated if all the G-conjugates of L are p-commensurable with each other.

Lemma 2.19. The image i(G) of G in Commp(G) is a p-commensurated subgroup of
Commp(G).

Proof. Let f : U → V be an isomorphism between two p-open subgroups of G. By Lemma
2.5 we have [f ]i(U)[f ]−1 = i(V ), and the subgroups i(U) are i(V ) are p-commensurable
since they are both p-open in i(G). □

2.3. Subgroups of the commensurator generated by automorphisms. Let G be
a topological group. Recall that for any finite index open subgroup U of G we denote by
Aut(U) the canonical image of Aut(U) in Comm(G). We define AComm(G) to be the
subgroup of Comm(G) generated by all subgroups Aut(U).

If G is an abstract group, we define

AComm(G) = AComm((G, τprof )) and ACommp(G) = AComm((G, τp)).

More explicitly,

• AComm(G) is the subgroup of Comm(G) generated by Aut(H) where H ranges
over all finite index subgroups of G;

• ACommp(G) is the subgroup of Commp(G) generated by Aut(H) where H ranges
over all p-open subgroups of G.

As we will show shortly (see Lemma 2.22 below and the remark after it), under mild
additional assumptions on G, the group AComm(G) is normal in Comm(G) and only
depends on the commensurability class of G.

Definition 2.20. A topological group G is characteristically based if every finite index
open subgroup of G contains a finite index open (topologically) characteristic subgroup.
We say that G is hereditarily characteristically based (h.c.b.) if every finite index open
subgroup of G is characteristically based.

Lemma 2.21. Any topological group that is topologically finitely generated is h.c.b.. In
particular, the following groups are h.c.b.:

(1) A finitely generated abstract group equipped with the profinite topology or pro-p
topology.
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(2) A finitely generated profinite group.4

Proof. Let G be a topologically finitely generated group. By a standard argument G
contains only finitely many open subgroups of any given finite index. The intersection Gn
of all open subgroups of index n is then a characteristic open subgroup, and by definition
every finite index open subgroup contains Gn for some n. Thus G is characteristically
based. Further, by Schreier’s subgroup lemma every finite index open subgroup of G
satisfies the same hypothesis, so in fact G is h.c.b. □

Lemma 2.22. Let G be a h.c.b. topological group. The following hold:

(a) Let U be any finite index open subgroup of G. Then AComm(U) = AComm(G).
(b) For any finite index open subgroup U of G and any f ∈ Comm(G) there exists a

finite index open subgroup Z of G such that

fAut(U)f−1 ⊆ Aut(Z).

In particular, AComm(G) is normal in Comm(G).

In particular, these conditions hold when G is a finitely generated abstract group equipped
with the profinite topology or pro-p topology or when G is a finitely generated profinite
group.

Proof. (a) The inclusion AComm(U) ⊆ AComm(G) holds simply because every finite
index open subgroup of U is also a finite index open subgroup of G. To prove the reverse
inclusion we need to show that for every finite index open subgroup V of G, the group
Aut(V ) lies in AComm(U). Since G is h.c.b., it has a finite index open subgroup W such
that W ⊆ U ∩V and W is characteristic in V . The latter implies that Aut(V ) ⊆ Aut(W ),
and since W ⊆ U , we have Aut(W ) ⊆ AComm(U), so Aut(V ) ⊆ AComm(U), as desired.

(b) Take any finite index open subgroup U of G and [φ] ∈ Comm(G). Since G is h.c.b.,
it has a finite index open subgroup W which is characteristic in U and such that φ is
defined on W . Let Z = φ(W ). Then for any ψ ∈ Aut(U) we have

φψφ−1(Z) = (φψ)(W ) = φ(W ) = Z,

so [φ] Aut(U)[φ]−1 ⊆ Aut(Z), as desired. □

3. Preliminaries on free groups and their automorphisms.

This section is organized as follows. We will start with some basic properties of the
automorphism groups of free groups in subsection 3.1, followed by the discussion of some
results on finite index subgroups in free groups and their generating sets in subsection 3.2.
After reviewing a few general facts about generation in profinite groups in subsection 3.3,
in subsection 3.4 we will state the analogues of some of the results from subsection 3.2 for
free pro-p groups. Finally, in subsection 3.5 we will introduce a natural topology on the
automorphism groups of profinite groups. The discussion of the automorphism groups of
free pro-p groups will be deferred till subsection 7.2.

4As we will explain in section 3, by a finitely generated profinite group, we mean a profinite group which
is topologically finitely generated.
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3.1. The subgroup SAut(F ) and Nielsen generators. Let F be a free group of rank
d > 1. The abelianization map F → F/[F, F] ∼= Zd induces a homomorphism π : Aut(F) →
Aut(Zd) ∼= GLd(Z), which is known to be surjective [LS01, Proposition 4.4]. The special
automorphism group SAut(F) is defined by

SAut(F) = π−1(SLd(Z)).

Since π is surjective, we have [Aut(F) : SAut(F)] = [GLd(Z)) : SLd(Z))] = 2.
It is well known that a subset X of F is a free generating set if and only if X generates

F and |X| = d. For brevity, we will refer to free generating sets as bases of F . Let
X = {x1, . . . , xd} be a fixed basis of F. For 1 ≤ i ̸= j ≤ d define Rij , Lij ∈ Aut(F ) by
Rij(xi) = xixj and Rij(xk) = xk for k ̸= i; and Lij(xi) = xjxi and Lij(xk) = xk for k ̸= i.
The maps Rij and Lij are called Nielsen transformations. Clearly, Rij , Lij ∈ SAut(F ),
and it is a classical theorem of Nielsen [Nie21] (see also [LS01, § I.4]) that SAut(F) is
generated by the maps Rij and Lij .

Every permutation of X defines an element of Aut(F ). We denote by Sym(X) the
corresponding subgroup of Aut(F ) and by Alt(X) ⊆ Sym(X) the subgroup consisting of
even permutations.

The following lemma collects some basic properties of SAut(F).

Lemma 3.1. The following hold:

(a) Sym(X) ∩ SAut(F) = Alt(X) .
(b) Assume that rk (F ) ≥ 3. Then SAut(F) is perfect and [Aut(F),Aut(F)] = SAut(F).

Proof. (a) holds since the image of an element σ of Sym(X) in Aut(F/[F, F]) ∼= GLd(Z)
is the permutation matrix Pσ and det(Pσ) = sgn(σ).

(b) Let d = rk (F). Since d ≥ 3, for any indices 1 ≤ i ̸= j ≤ d there exists 1 ≤
m ≤ d with m ̸= i, j, and by direct computation Rij = [Rmj , Rim] and Lij = [Lmj , Lim].
Since SAut(F ) is generated by Rij and Lij , it follows that SAut(F ) is perfect. Finally,
[Aut(F),Aut(F)] ⊆ SAut(F) simply because [GLd(Z),GLd(Z)] ⊆ SLd(Z). □

3.2. On the subgroup structure of free groups. Let F be a non-abelian free group
of finite rank.

Normal subgroups with finite cyclic quotients. Throughout the paper we will fre-
quently deal with automorphisms of finite index subgroups of F . The following situation
will play a special role.

Definition 3.2. Let m ≥ 2. We denote by SCQ(F,m) the set of normal subgroups of F
such that F/H is cyclic of order m.

For a general m, among the normal subgroups of index m, the ones in SCQ(F,m)
are very special. However when m = p is prime, every normal subgroup of index p is in
SCQ(F, p).

Definition 3.3. Let m ≥ 2. Let X be a basis of F and let x ∈ X. We denote by
F (X,x,m) the subgroup of F normally generated by xm and X \ {x}. Equivalently,
F (X,x,m) is the unique normal subgroup of index m in F which contains X \ {x}.

The following fact is well known, but we are not aware of an explicit reference in the
literature, so we will provide a proof.
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Lemma 3.4. Fix m ≥ 2. Then any subgroup in SCQ(F,m) is equal to F (X,x,m) for
some basis X of F and x ∈ X. Moreover, SAut(F ) acts transitively on SCQ(F,m).

Proof. Let H be any subgroup in SCQ(F,m) and choose an epimorphism φ : F → Z/mZ
with Ker (φ) = H. Given an ordered basis X = (x1, . . . , xd), let t(X) ∈ (Z/mZ)d be the
vector (φ(x1), . . . , φ(xd)). Then for any indices i ̸= j, the vector t(R±1

ij X) is obtained from

t(X) by adding (resp. subtracting) the jth coordinate to (resp. from) the ith coordinate.
Using such operations, any nonzero vector in (Z/mZ)d can be reduced to a vector with

only one nonzero coordinate (equal to the greatest common divisor of the coordinates of
the original vector). Therefore, starting with any basis X0 and applying suitable Nielsen
maps to it, we obtain a basis X such that t(X) has at most one (in fact, exactly one)
nonzero coordinate; equivalently, H = Ker (φ) contains X \ {x}. Since H is normal of
index m, it follows that H = F (X,x,m), so we proved the first assertion of Lemma 3.4.

To deduce the second assertion from the first one, note that Aut(F ) acts transitively
on the set of ordered bases, so for any bases X,X ′ of F and elements x ∈ X and x′ ∈ X ′

there exists φ ∈ Aut(F ) which sends F (X,x,m) to F (X ′, x′,m). Moreover, if ε is the
automorphism of F which sends x to x−1 and fixes other elements of X, then φε also
sends F (X,x,m) to F (X ′, x′,m), and one of the maps φ and φε lies in SAut(F ). □

The Schreier index formula. Any subgroup of F is free, and the rank of a finite index
subgroup H of F can be computed by the Schreier index formula:

rk (H) = 1 + [F : H] · rk (F).
Moreover, suppose we are given a basis X for F and a right Schreier transversal T for H
and F with respect to X (that is, a set of right coset representatives closed under taking
suffixes, where elements of F are viewed as reduced words in X ⊔ X−1). Then H has a
basis consisting of non-identity elements of the form

{txtx−1
: t ∈ T, x ∈ X} (∗ ∗ ∗)

where g is the unique element of T with Hg = Hg.

Definition 3.5. We adopt the following convention for commutators: [x, y] = xyx−1y−1,
and a commutator of length more than two should be read as a left-normed commutator:
[x1, . . . , xn+1] = [[x1, . . . , xn], xn+1].

The following will be used repeatedly, sometimes without further mention, later in the
paper.

Lemma 3.6. Let X be a basis of F, let x ∈ X, and let m ≥ 2. Then each of the following
sets is a free generating set for F (X,x,m):

(a) Y = {xm} ∪ {xjyx−j : y ∈ X \ {x}, 0 ≤ j ≤ m− 1}.
(b) Z = {xm} ∪ {[y, jx] : y ∈ X \ {x}, 0 ≤ j ≤ m− 1} where [y, jx] is the left-normed

commutator [y, x, . . . , x︸ ︷︷ ︸
j times

].

Proof. (a) Y is precisely the generating set given by (***) if we set T = {1, x, . . . , xm−1}.
(b) Since |Z| = |Y |, it suffices to show that Z is a generating set for F (X,x,m). To

deduce this from (a) it suffices to show that ⟨y, xyx−1, . . . , xkyx−k⟩ = ⟨y, [y, x], . . . , [y, kx]⟩
for all y ∈ F and k ∈ N. The latter can be proved by routine induction using the
observation that [y, kx] = [y, k−1x](x[y, k−1x]x

−1)−1. □
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Primitive elements and free factors. An element g ∈ F is called primitive (for F ) if
g belongs to some basis of F . Every non-trivial element of F is primitive for some finite
index subgroup. This is a special case of the famous free factor theorem of M. Hall (see
[HJ49, Theorem 5.1] and [Bur69, Theorem 1]5):

Theorem 3.7. Let H a finitely generated subgroup of F . Then H is a free factor for
some finite index subgroup of F .

We will revisit Theorem 3.7 and discuss further generalizations in section 8.

3.3. Generation in profinite groups and the Frattini subgroup. Before turning to
free pro-p groups, we make a short digression and discuss some basic facts about genera-
tion in arbitrary profinite groups, with emphasis on pro-p groups. Following a standard
convention, by a generating set of a profinite group we will mean a topological generating
set unless explicitly mentioned otherwise. In particular, we will say that a profinite group
is finitely generated if it has a finite topological generating set. However, we will not follow
this convention whenever discussing generation of abstract and profinite groups in the
same setting, most notably in section 8.

Definition 3.8. Let G be a profinite group. The Frattini subgroup Φ(G) is the intersection
of all maximal proper open subgroups of G.

The Frattini subgroup Φ(G) has the following key properties (see [RZ00, 2.8.5]):

Lemma 3.9. Let G be a profinite group. The following hold:

(i) A subset S of G is a generating set if and of only if G/Φ(G) is generated by the
image of S.

(ii) An element g ∈ G lies in Φ(G) if and only if g is a non-generator, that is, for any
generating set S of G, the set S \ {g} also generates G.

If G is pro-p, there is a simple explicit formula for the Frattini subgroup: Φ(G) =

[G,G]Gp, where Gp = ⟨xp : x ∈ G⟩ is the subgroup generated by the pth powers (see
[RZ00, 2.8.7]). Thus the Frattini quotient G/Φ(G) is an elementary abelian p-group.
Things become even nicer if in addition G is finitely generated [RZ00, 2.8.10-2.8.13]:

Proposition 3.10. Let G be a finitely generated pro-p group. The following hold:

(a) Φ(G) = [G,G]Gp and Φ(G) is open in G.
(b) Define the Frattini series (Φℓ(G))ℓ≥0 inductively by Φ0(G) = G and Φℓ+1(G) =

Φ(Φℓ(G)) for every ℓ ≥ 0. Then (Φℓ(G))ℓ≥0 is a base of neighborhoods of 1 in G.

3.4. Free pro-p groups. Let X be a finite set and F = F (X), the free group on X. The

pro-p completion F = F̂p is called a free pro-p group on X, and X will be referred to as
a basis of F. We will also say that F is free pro-p of finite rank, and the number d = |X|
(which is determined by the isomorphism class of F) will be called the rank of F.

More generally, a subset Y of F will be called a basis if the inclusion map Y → F

induces an isomorphism from F̂ (Y )p to F. In complete analogy with free groups, bases of

F are precisely the (topological) generating sets of the smallest cardinality [RZ00, Lemma
3.3.5.b].

5This result does not follow from the statement of Theorem 5.1 in [HJ49], but it follows from its proof
as explained in [Bur69].
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The Schreier index formula remains valid in pro-p groups. Indeed, if F is a free group

of finite rank d and F = F̂p is its pro-p completion, then the map U → U ∩ F establishes
an index-preserving bijection between open subgroups of F and p-open subgroups of F ,
and any such U is isomorphic to the pro-p completion of U ∩ F .

The category of pro-p groups admits free products; see [RZ00, § 9.1] for basic features
of free pro-C products of finitely many groups, which is the only case we will need. When
discussing pro-p groups, A∗B will denote the free pro-p product, rather than the abstract
free product. Free pro-p factors of a pro-p group are always closed. We will need the
following pro-p analogue of Hall’s free factor theorem:

Theorem 3.11 (See [Lub82, Theorem 3.2] or [RZ00, Theorem 9.1.19]). Let F be a free
pro-p group of finite rank and let H be a closed subgroup of F that is topologically finitely
generated. Then there is an open subgroup K of F such that H is a free pro-p factor of
K.

3.5. The A-topology on the automorphism group of a profinite group. A detailed
discussion of the automorphism groups of free pro-p groups will be deferred till subsec-
tion 7.2. We finish this section by introducing a natural topology on Aut(G) for a profinite
group G, which we will call the A-topology. We warn the reader that the canonical map
Aut(G) → Comm(G) is not continuous with respect to the A-topology unless Aut(G) is a
finite extension of Inn(G), the subgroup of inner automorphisms.

Let G be a profinite group. For every open subgroup U of G define Aut(G;U) ⊆ Aut(G)
by

Aut(G;U) = {φ ∈ Aut(G) : φ(g) ≡ g mod U for all g ∈ G}.
Each Aut(G;U) is a subgroup of Aut(G), and the family of all subgroups Aut(G;U)
satisfies the hypotheses of Proposition 2.6 and has trivial intersection, so Aut(G) has the
structure of a Hausdorff topological group where the subgroups Aut(G;U) form a base of
neighborhoods of the identity. We will call this the A-topology on Aut(G).

When G is a finitely generated profinite group, Aut(G) with the A-topology is also
compact and hence profinite [RZ00, Corollary 4.4.4]. More is true in the case where G is
a finitely generated pro-p group [RZ00, Lemma 4.5.5]:

Proposition 3.12. Let G be a finitely generated pro-p group. Then the subgroup

Aut(G; Φ(G)) = Ker (Aut(G) → Aut(G/Φ(G)))

(which is open by Proposition 3.10(a)) is pro-p. Thus Aut(G) is virtually pro-p.

Later in the paper, we will apply Proposition 3.12 in two separate proofs, both times
in the case where G is free pro-p. In one of the instances the specific topology on Aut(G)
will not play a role; we will just need to know that Aut(G; Φ(G)) is pro-p with respect to
some topology.

4. Some precursors to the simplicity theorems

Recall that throughout the paper F denotes a non-abelian free group of finite rank.

4.1. Stability and instability of det under passing to invariant subgroups. In this
subsection we establish basic results relating the groups SAut(F ) and SAut(H) where H
is a suitable finite index subgroup of F . The first result of this kind follows immediately
from Lemma 3.1(b):
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Corollary 4.1. Suppose that rk (F) ≥ 3. Let H be a finite index characteristic subgroup
of F, so that Aut(F) ⊆ Aut(H) if we view both Aut(F ) and Aut(H) as subgroups of
Comm(F ). Then SAut(F) ⊆ SAut(H).

Proof. Note that rk (H) ≥ rk (F) ≥ 3. Hence by Lemma 3.1(b) we have

SAut(F) = [Aut(F),Aut(F)] ⊆ [Aut(H),Aut(H)] = SAut(H). □

Notation 4.2. If H is a finite index subgroup of F , we denote by Aut(F )H the stabilizer
of H in Aut(F ). Hence inside the ambient group Comm(F) we have Aut(F )H ⊆ Aut(H).

Given α ∈ Aut(F ), we set det(α) = det(π(α)) where π : Aut(F) → GLd(Z) is the
canonical map. Thus, α ∈ SAut(F ) if and only if det(α) = 1. If H is a finite index
subgroup of F such that α ∈ Aut(F )H , we set detH(α) = det(α|H) where α|H is the
automorphism of H induced by α. Corollary 4.1 can be rephrased by saying that if
rk (F ) ≥ 3, detF (α) = 1 and H is characteristic in F , then detH(α) = 1 as well. As we
will see shortly, such implication does not hold if we only assume that H is α-invariant.

Lemma 4.3. Let m ≥ 2 and H ∈ SCQ(F,m). The following hold:

(a) There exists α ∈ Aut(F )H such that α|H ̸∈ SAut(H). Hence if we view Aut(F )
and Aut(H) as subgroups of Comm(F ), then Aut(H) ⊆ ⟨SAut(H),Aut(F )⟩.

(b) If m = 2, or if m ≡ 3 mod 4 and rk (F ) is even, then there exists α ∈ Aut(F )H
such that α ̸∈ SAut(F ), but α|H ∈ SAut(H). Hence inside Comm(F ) we have
Aut(F ) ⊆ ⟨SAut(F ),SAut(H)⟩.

Proof. Let d = rk (F ). By Lemma 3.4 we have H = F (X,x1,m) for some basis X =
{x1, . . . , xd} of F, and then by Lemma 3.6(a) H has a basis

Y =
{
xp1, x

k
1xix

−k
1 : 2 ≤ i ≤ d, 0 ≤ k ≤ m− 1

}
.

(a) Let α be the automorphism of F given by α(x2) = x−1
2 and α(xi) = xi for i ̸= 2.

Then α preserves H; in fact, it invertsm generators from Y , namely the elements xk1x2x
−k
1 ,

and fixes the remaining generators. Hence the matrix of the induced automorphism of
H/[H,H] is diagonal, with all diagonal entries equal to ±1 and exactly m entries equal to
−1. Thus detH(α) = (−1)m, so α|H ̸∈ SAut(H) if m is odd.

For m even, we consider the automorphism γ of F that maps x2 to x1x2x
−1
1 and fixes

all other elements of X. In this case the matrix of the induced automorphism of H/[H,H]
is a permutation matrix associated to a cycle of length m, so detH(γ) = −1. This finishes
the proof of the first assertion of (a).

The second assertion of (a) follows from the first one and the fact that SAut(H) has
index 2 in Aut(H), so there are no subgroups strictly between Aut(H) and SAut(H).

(b) As in (a), it suffices to prove the first assertion. First suppose that m = 2 and
consider the automorphism α used in the proof of (a). Clearly detF (α) = −1, and
detH(α) = (−1)2 = 1 by the computation in (a), so α ̸∈ SAut(F ) while α|H ∈ SAut(H),
as desired.

Now suppose that m ≥ 3 and d = rk (F ) is even. Define β ∈ Aut(F ) by β(x1) = x−1
1

and β(xi) = xi for i ̸= 1, so that detF (β) = −1. To show that β preserves H and compute
detH(β), it is more convenient to use a slightly different basis Z for H:

Z =

{
xm1 , x

k
1xix

−k
1 : 2 ≤ i ≤ d, |k| ≤ m− 1

2

}
.
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Note that β inverts one element of Z, namely xm1 , fixes d − 1 elements, namely xi for
2 ≤ i ≤ d, and performs (d − 1)(m − 1)/2 transpositions on the remaining generators (it

swaps xk1xix
−k
1 with x−k1 xix

k
1 whenever k ̸= 0). Hence detH(α) = (−1)

(d−1)(m−1)
2

+1 = 1
since m ≡ 3 mod 4 and d is even. □

4.2. Preliminary results on the subgroups of Comm(F ). In this subsection we will
establish two technical results on the subgroup structure of Comm(F ). In both cases
our goal is to show that the subgroup of Comm(F ) generated by a certain set contains
SAut(H) where H = F or H ∈ SCQ(F,m).

We will need the following lemma, which can be extracted from the proof of [BV03,
Proposition 1]. The proposition is originally stated for normal subgroups of Aut(F ), but
the argument works just as well for subgroups normalized by SAut(F ).

Lemma 4.4. Suppose that rk (F ) ≥ 3, and let N be a subgroup of Aut(F ) normalized by
SAut(F ). Suppose that some element of N acts as a non-trivial permutation of a basis
for F . Then N contains SAut(F ).

As in subsection 3.1, for any basis X of F , we will view the symmetric group Sym(X)
and the alternating group Alt(X) as subgroups of Aut(F ).

Proposition 4.5. Let d = rk (F ) and X = {x1, . . . , xd} a basis of F . Let m ≥ 2,
let H = F (X,x1,m), and let s ≥ 1 be such that m does not divide s. Assume that
(d,m) ̸= (2, 2). Then the group generated by the SAut(H)-conjugates of xs1 contains
SAut(H). In particular, the group generated by the SAut(H)-conjugates of F contains
SAut(H).

Proof. We write y = xm1 and zk,i = xi1xkx
−i
1 . Recall from Lemma 3.6(a) that

Z = {y, zk,i : 2 ≤ k ≤ d, 0 ≤ i ≤ m− 1}

is a basis of H. Note that |Z| = 1 +m(d− 1) ≥ 4. Let α denote the automorphism of H
induced by the conjugation by xs1, and let N denote the subgroup of Aut(H) generated
by the SAut(H)-conjugates of xs1. By Lemma 4.4, it is enough to show that N ∩Alt(Z) is
non-trivial. The remainder of the proof consists of constructing a non-trivial element in
N ∩Alt(Z).

Since m ∤ s, one can write s = mq + r with 1 ≤ r ≤ m− 1, so that xs1 = yqxr1. We have
α(y) = y, α(zk,i) = yq zk,i+r y

−q for 0 ≤ i ≤ m − 1 − r and α(zk,i) = yq+1 zk,i+r−m y
−q−1

for m− r ≤ i ≤ m− 1 .

Case 1: d ≥ 3. Define τ ∈ SAut(H) by τ(z2,0) = z−1
3,0 , τ(z3,0) = z2,0, and τ(z) = z for

all z ∈ Z \{z2,0, z3,0}. A direct computation shows that ατα−1 maps z2,r to z
−1
3,r , maps z3,r

to z2,r and fixes the remaining elements of Z. Consider the commutator β = ατα−1τ−1.
For any z ∈ Z denote by εz the automorphism of H which sends z to z−1 and fixes

other elements of Z. Then we can write β = εσ where ε = εz2,0εz3,r and σ is the product
of two transpositions (z2,0, z3,0)(z2,r, z3,r) ∈ Alt(Z).

Note that β ∈ N since α ∈ N , τ ∈ SAut(H) and N is normalized by SAut(H). Let
γ be the 3-cycle (y, z3,0, z2,r) ∈ Alt(Z) ⊂ SAut(H). Then β−1γβγ−1 ∈ N as well; on the
other hand, γ commutes with ε, whence β−1γβγ−1 = σ−1γσγ−1 ∈ Alt(Z). It follows that
σ−1γσγ−1 ∈ N ∩ Alt(Z), and this element is non-trivial. Hence the proof is complete in
this case.
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Case 2: d = 2 and m = 3. Then r = 1 or r = 2, and replacing xs1 by x2s1 if needed, we

can assume that r = 1. Define τ ∈ SAut(H) by τ(z2,0) = z−1
2,1 , τ(z2,1) = z2,0 and τ(z) = z

for z ∈ Z \ {z2,0, z2,1}, and as in Case 1 define β = ατα−1τ−1. Then β = εσ where
ε = εz2,0εz2,2 and σ = (z2,0, z2,2, z2,1). Now let γ be the 3-cycle (z2,0, z2,2, z2,1) ∈ Alt(Z).

Then γ = β2γβ−1γ−1, so γ ∈ N .

Case 3: d = 2 and m ≥ 4. Again replacing xs1 by x2s1 if needed, we can assume 2 ≤ r ≤
m − 2. This ensures that {z2,r, z2,r+1} is disjoint from {z2,0, z2,1}. Define τ ∈ SAut(H)

by τ(z2,0) = z−1
2,1 , τ(z2,1) = z2,0 and τ(z) = z for all z ∈ Z \ {z2,0, z2,1}, and define β as

in previous cases. Then β = εσ where ε = εz2,0εz2,r+1 and σ = (z2,0, z2,1)(z2,r, z2,r+1) ∈
Alt(Z). As in Case 1, if γ is the 3-cycle (y, z2,1, z2,r+1), then β−1γβγ−1 is a non-trivial
element in N ∩Alt(Z). This concludes the proof. □

Lemma 4.6. Let m ≥ 2. Then the subgroup of Comm(F) generated by Aut(H) (resp.
SAut(H)), where H ranges over SCQ(F,m), contains Aut(F ) (resp SAut(F)).

Proof. Let d = rk (F ), and fix a basis X = {x1, . . . , xd} of F . We first prove the assertion
about SAut. Recall that SAut(F) is generated by the Nielsen maps Rij and Lij . By
symmetry, it suffices to show that (R12)|H lies in SAut(H) for some H ∈ SCQ(F,m).

Case 1: d ≥ 3. Consider the subgroup H = F (X,xd,m); recall that it has a basis

Y = {xmd , x
j
dxix

−j
d : 1 ≤ i ≤ d − 1, 0 ≤ j ≤ m − 1}. Since d ≥ 3, H is invariant under

R12, and the induced automorphism (R12)|H sends xjdx1x
−j
d to (xjdx1x

−j
d )(xjdx2x

−j
d ) for all

0 ≤ j ≤ m − 1 and fixes other elements of Y . In particular, (R12)|H is a product of m
Nielsen maps (relative to Y ) and hence lies in SAut(H), as desired.

Case 2: d = 2. Now let H = F (X,x1,m); similarly to Case 1, it has a basis Y =
{xm1 , zi : 0 ≤ i ≤ m − 1} where zi = xi1x2x

−i
1 . We will show that H is R12-invariant and

(R12)|H ∈ SAut(H). We claim that

(i) R12(x
m
1 ) = z1 · · · zm−1x

m
1 z0;

(ii) R12(zi) ∈ H and R12(zi) = zi mod [H,H] for all i.

Conditions (i) and (ii) would imply that R12 preserves H and the matrix of the induced
action of R12 on the abelianization of H is unipotent, so (R12)|H ∈ SAut(H) as desired.

Condition (i) can be checked by direct computation. Let us now prove (ii) by induction
on i. The base case i = 0 is clear since z0 = x2 and R12 fixes x2. For the induction
step, we have R12(zi+1) = R12(x1zix

−1
1 ) = x1x2R12(zi)x

−1
2 x−1

1 . By the induction hy-

pothesis, R12(zi) = zi mod [H,H]. Since x2 ∈ H we deduce that R12(zi+1) = x1zix
−1
1

mod [H,H] = zi+1 mod [H,H]. This completes the induction step. Combined with (i),
we deduce that R12 preserves H and the matrix of R12 at the level of the abelianization
of H is a unipotent matrix. Hence (R12)|H ∈ SAut(H).

Thus we proved the part of Lemma 4.6 dealing with SAut(F ). The assertion about
Aut(F ) follows from the one about SAut(F ) combined with the fact that the automorphism
α ∈ Aut(F) given by α(x1) = x−1

1 and α(xk) = xk for k > 1 does not lie SAut(F) and
stabilizes H. □

5. Normal subgroups of Comm(F )

5.1. Simplicity of AComm(F ). Let F be a non-abelian free group of finite rank. In this
subsection we will prove the first part of Theorem A which asserts that AComm(F ) is
simple and is equal to Mon(Comm(F )), the monolith of Comm(F ).
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First we will show that all non-trivial elements of F lie in a single orbit under the action
of AComm(F ) (see Proposition 5.2 below). We will establish this result as a straightfor-
ward consequence of M. Hall’s free factor theorem (Theorem 3.7).

Lemma 5.1. Let g ∈ F be a non-trivial element. Then there exists a finite index subgroup
H of F and an element x ∈ H such that g ∈ H, g is primitive in H and x is primitive
for both H and F .

Proof. Let x be any primitive element of F which does not commute with g and let
C = ⟨x, g⟩. Then C is free of rank 2 (since it is 2-generated and non-abelian) and hence
{x, g} is a basis for C. By Theorem 3.7, there exists a finite index subgroup H of F which
contains C as a free factor. By construction x and g are both primitive for C and hence
also for H. □

Proposition 5.2. Let y1, y2 be non-trivial elements of F . Then there is ψ ∈ AComm(F )
such that ψy1ψ

−1 = y2. Moreover, there exist finite index subgroups H1, H2 of F and
φi ∈ Aut(Hi) and φ ∈ Aut(F ) such that ψ = φ−1

2 φφ1.

Proof. By Lemma 5.1, there exist finite index subgroups H1 and H2 of F and elements
xi ∈ Hi such that Hi contains both yi and xi, yi is primitive for Hi and xi is primitive
for both Hi and F for i = 1, 2. Since primitive elements in a finitely generated free group
form a single orbit under the action of the automorphism group, there exist φi ∈ Aut(Hi),
i = 1, 2, and φ ∈ Aut(F ) such that φi maps yi to xi and φ maps x1 to x2. Thus,
φi yi φ

−1
i = xi and φx1 φ

−1 = x2 (now viewing xi and yi as elements of Comm(F ))

whence ψ = φ−1
2 φφ1 satisfies the required equality. □

The following result is an immediate consequence of Lemma 4.3(b) applied with m = 2:

Proposition 5.3. Denote by SComm(F ) the subgroup of Comm(F ) generated by SAut(H)
where H ranges over all finite index subgroups of F . Then SComm(F ) = AComm(F ).

We are now ready to prove the first part of Theorem A. In fact, we will prove a slightly
stronger statement:

Theorem 5.4. Let N be a non-trivial subgroup of Comm(F ) normalized by AComm(F ).
Then N contains AComm(F ). Therefore AComm(F ) is simple and equals Mon(Comm(F )),
the monolith of Comm(F ).

Proof. Recall that Comm(F ) does not depend on rk (F ). By Proposition 5.3 AComm(F )
is generated by the subgroups SAut(H) where H ranges over finite index subgroups of F .
Below we prove that N contains SAut(F ). The same argument will show that N contains
SAut(H) for any finite index subgroup H of F , and hence contains AComm(F ).

By Lemma 2.13 (applied to F equipped with the profinite topology), the subgroup N∩F
is non-trivial. By Proposition 5.2, all non-trivial elements of F lie in a single conjugacy
class in AComm(F ). Since N is normalized by AComm(F ), we deduce that N contains F .
Applying Proposition 4.5 (for instance with m = 3), we deduce that N contains SAut(H)
for every subgroup H of index 3 in F . Hence N contains SAut(F ) by Lemma 4.6.

We have shown in particular that AComm(F ) is simple. The equality AComm(F ) =
Mon(Comm(F )) also follows since AComm(F ) is normal in Comm(F ) by Lemma 2.22. □

5.2. Non-simplicity of Comm(F). In this subsection we will establish the second part
of Theorem A. It will be derived as a consequence of the following general theorem which
establishes a sufficient condition for AComm(G) to be a proper subgroup of Comm(G):
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Theorem 5.5. Let G be a finitely generated abstract group. Assume that

(a) G has either trivial virtual center or the unique root property;
(b) G has two isomorphic normal finite index subgroups U and V such that the quo-

tients G/U and G/V have distinct (multisets of) composition factors.

Then AComm(G) is a proper subgroup of Comm(G) and therefore Comm(G) is not simple.

Proof. Non-simplicity of Comm(G) follows from the first assertion of the theorem and
Lemma 2.22(b), so we just need to show that AComm(G) ̸= Comm(G).

We start by introducing some terminology. Given a group Λ and a finite index subnor-
mal subgroup H of Λ, denote by CF (Λ/H) the multiset of (isomorphism classes of) the
composition factors of any composition series which starts with Λ and ends with H. This
multiset is independent of the choice of such a series, which can be shown by applying
the Jordan-Hölder theorem to the group Λ/CoreΛ(H) where CoreΛ(H) =

⋂
g∈ΛH

g is the
largest normal subgroup of Λ contained in H.

Define CommSN (G) to be the set of elements of Comm(G) which can be represented
by a virtual isomorphism φ : A → B where A and B are both subnormal in G and
CF (G/A) = CF (G/B). We will prove that

(i) CommSN (G) is a subgroup;
(ii) CommSN (G) contains AComm(G);
(iii) CommSN (G) ̸= Comm(G).

Theorem 5.5 follows directly from (ii) and (iii).

We start with the proof of (i). Clearly, we only need to show that CommSN (G) is closed
under the group operation in Comm(G). So take any two virtual isomorphisms φ : A→ B
and ψ : C → D where A,B,C and D are subnormal in G, CF (G/A) = CF (G/B) and
CF (G/C) = CF (G/D), and let [φ] and [ψ] be the corresponding elements of Comm(G).
By definition of the group operation, [ψ][φ] = [θ] where θ : φ−1(B ∩C) → ψ(B ∩C) is the
composition of ψ and φ restricted to φ−1(B ∩ C).

Since C is subnormal in G, B ∩C is subnormal in B (and hence in G). Moreover, since
φ−1 (resp. ψ) is an isomorphism from B to A (resp. from C to D) sending B ∩ C to
φ−1(B ∩ C) (resp. ψ(B ∩ C)), it follows that φ−1(B ∩ C) is subnormal in A, ψ(B ∩ C)
is subnormal in D (so both are subnormal in G), CF (A/(φ−1(B ∩ C))) = CF (B/B ∩ C)
and CF (C/B ∩ C) = CF (D/ψ(B ∩ C)). Therefore,

CF (G/(φ−1(B ∩ C))) = CF (G/A) ⊔ CF (A/(φ−1(B ∩ C)))
= CF (G/B) ⊔ CF (B/B ∩ C) = CF (G/B ∩ C) = CF (G/C) ⊔ CF (C/B ∩ C)

= CF (G/D) ⊔ CF (D/ψ(B ∩ C)) = CF (G/ψ(B ∩ C)).

Thus, θ : φ−1(B ∩ C) → ψ(B ∩ C) represents an element of CommSN (G), and we proved
(i).

(ii) Since CommSN (G) is a subgroup, we just need to check that it contains Aut(A) for
every finite index subgroup A of G. This is automatic if A is subnormal. In the general
case, choose a finite index subgroup B contained in A which is normal in G and let C be a
finite index subgroup of B which is characteristic in A – such C exists since G (and hence
A) is finitely generated. Then C is subnormal in G and Aut(A) ⊆ Aut(C) ⊆ CommSN (G),
as desired.
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(iii) Let U and V be isomorphic finite index normal subgroups ofG such that CF (G/U) ̸=
CF (G/V ), and let φ : U → V be any isomorphism. We claim that its class [φ] does not
lie in CommSN (G).

Indeed, suppose that there exist subnormal finite index subgroups C and D of G with
CF (G/C) = CF (G/D) and an isomorphism ψ : C → D such that [φ] = [ψ]. Let
C1 be a normal subgroup of C contained in U ∩ ψ−1(D ∩ V ) and D1 = ψ(C1). Then
D1 ⊆ V , D1 is normal in D and C/C1

∼= D/D1, so CF (C/C1) = CF (D/D1) and therefore
CF (G/C1) = CF (G/D1).

Note that φ and ψ are equivalent virtual automorphisms of G which are both defined on
C1. By Lemma 2.10 or Lemma 2.11, hypothesis (a) in Theorem 5.5 ensures that φ|C1

=
ψ|C1

. In particular, φ(C1) = ψ(C1) = D1 whence CF (U/C1) = CF (φ(U)/φ(C1)) =
CF (V/D1). On the other hand, CF (G/U) ̸= CF (G/V ) (by the choice of U and V ), so
CF (G/C1) = CF (U/C1) ⊔ CF (G/U) ̸= CF (V/D1) ⊔ CF (G/V ) = CF (G/D1), contrary
to our earlier conclusion. □

Given a group G satisfying the hypotheses of Theorem 5.5, a natural problem is to
understand the quotient Comm(G)/AComm(G). Theorem 5.6 below gives a sufficient
condition for this quotient to be infinite.

Theorem 5.6. Let G be a finitely generated abstract group. Assume that

(a) G has either trivial virtual center or the unique root property;
(b) for every n ∈ N there exist pairwise isomorphic finite index normal subgroups

U1, . . . , Un of G such that the quotients G/Ui and G/Uj have distinct composition
factors for all i ̸= j.

Then the quotient Comm(G)/AComm(G) is infinite.

Proof. For 1 ≤ i ≤ n choose an isomorphism φi : U1 → Ui. Then for any i ̸= j the
map φjφ

−1
i is an isomorphism from Ui to Uj , and hence by the proof of Theorem 5.5

[φjφ
−1
i ] ̸∈ AComm(G). Thus, the commensurations [φ1], . . . , [φn] represent distinct ele-

ments of Comm(G)/AComm(G), so |Comm(G)/AComm(G)| ≥ n, and since n is arbitrary,
Comm(G)/AComm(G) is infinite. □

The hypotheses of Theorem 5.6 are easily seen to be satisfied if G is a non-abelian free
group or a non-abelian (orientable) surface group. Hypothesis (a) is clear. In both cases
subgroups of the same finite index are isomorphic, so to check (b) we just need to construct
normal subgroups U1, . . . , Un of G of the same finite index such that the quotients G/Ui
and G/Uj have distinct composition factors for all i ̸= j.

Suppose first that G is free and non-abelian. Choose n pairwise non-isomorphic finite
simple groups S1, . . . , Sn and then choose cyclic groups C1, . . . , Cn such that |Si|·|Ci| is the
same for all i. Each Si is 2-generated. A standard argument shows that each Pi = Si×Ci
is also 2-generated, so we can find epimorphisms φi : G → Pi, and then the subgroups
Ui = Ker (φi) have the desired properties.

Now let G = Sg, the orientable surface group of genus g > 1, and choose any epimor-
phism from Sg to Fg, a free group of rank g. We just proved that there exist subgroups
V1, . . . , Vn of Fg of the same finite index, say, cn, and such that Fg/Vi and Fg/Vj have
distinct composition factors for all i ̸= j. Now if Ui is the preimage of Vi in Sg, then each
Ui has index cn in Sg and Sg/Ui ∼= Fg/Vi, so U1, . . . , Un satisfy (b).

Corollary 5.7. Let G be non-abelian free group of finite rank or a non-abelian orientable
surface group. Then Comm(G) is not virtually simple.
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6. A family of finitely generated simple groups

Let F be a non-abelian free group of finite rank. Recall that for m ≥ 2 we denote by
SCQ(F,m) the set of all normal subgroups H of F such that F/H is cyclic of order m.

Definition 6.1. For m ≥ 2, let Am(F ) be the subgroup of Comm(F ) generated by the
subgroups Aut(H) where H ranges over SCQ(F,m), and let Sm(F ) be the subgroup
generated by the subgroups SAut(H) where H ranges over SCQ(F,m).

Clearly Sm(F ) ⊆ Am(F ). Note that the groups Am(F ) and Sm(F ) are finitely generated
since SCQ(F,m) is finite and Aut(H) and SAut(H) are finitely generated for each H.

Lemma 6.2. Let m ≥ 2. The following hold:

(1) SAut(F ) ⊆ Sm(F ) and Aut(F ) ⊆ Am(F ).
(2) For every H ∈ SCQ(F,m), we have Sm(F ) = ⟨SAut(F ), SAut(H)⟩ and Am(F ) =

⟨Aut(F ),Aut(H)⟩.
(3) Sm(F ) has index at most 2 in Am(F ).

Proof. (1) is Lemma 4.6. (2) follows from (1) and the fact that SAut(F ) acts transitively
on SCQ(F,m) (by Lemma 3.4). Let us prove (3). Since Aut(F ) permutes the subgroups
SAut(H) where H ranges over SCQ(F,m), Aut(F ) normalizes Sm(F ). Lemma 4.3(a)
implies that Am(F ) = ⟨Aut(F ), Sm(F )⟩. Hence Sm(F ) is normal in Am(F ) and we can
write Am(F ) = Aut(F )Sm(F ). Since Sm(F ) already contains SAut(F ), it follows that
[Am(F ) : Sm(F )] ≤ [Aut(F ) : SAut(F )] = 2. □

Remark 6.3. Lemma 4.3(b) implies that Sm(F ) = Am(F ) if either m = 2, or m ≡ 3
mod 4 and d = rk (F ) is even. We do not know whether there exist values of (d,m) such
that Sm(F ) is a subgroup of Am(F ) of index exactly 2, i.e. such that Sm(F ) is a proper
subgroup of Am(F ).

Lemma 6.4. Let m ≥ 2 and x a primitive element of F . Then x is conjugate to xm in
Sm(F ).

Proof. Let X = {x1, . . . , xd} be a basis of F with x = x1. The elements x1 and x2 are
conjugate in SAut(F ), and hence in Sm(F ) since SAut(F ) ⊆ Sm(F ) (Lemma 6.2). On the
other hand {x2, xm1 } is a subset of a basis of H = F (X,x1,m), so one can conjugate x2 to
xm1 in SAut(H). □

Proposition 6.5. Let m ≥ 2, and let d = rk (F ). Suppose (d,m) ̸= (2, 2). Then the group
Sm(F ) has no proper finite index subgroup. More generally, if N is a normal subgroup of
Sm(F ) such that N contains a finite index subgroup of F , then N = Sm(F ).

Proof. Since every finite index subgroup contains a normal finite index subgroup, the first
claim follows from the second one. So let N be as in the statement. Let H ∈ SCQ(F,m),
and X a basis of F and x ∈ X such that H = F (X,x,m). Since N contains a finite
index subgroup of F , there is n ≥ 1 such that xn ∈ N . Write n = mks where k ≥ 0 and
m does not divide s. By Lemma 6.4 there is c ∈ Sm(F ) such that cxc−1 = xm. Then
ckxsc−k = xn. Since N is normal in Sm(F ), we get xs = c−kxnck ∈ N . Since m does not
divide s and (d,m) ̸= (2, 2), we can apply Proposition 4.5 and deduce that SAut(H) ⊆ N .
Since H was arbitrary in SCQ(F,m), this proves that N = Sm(F ). □

In the sequel we write Γ = PSL2(Z). Recall that the principal congruence subgroup
Γ(ℓ) of level ℓ ≥ 2 of Γ is the kernel of the homomorphism Γ → PSL2(Z/ℓZ) defined by
the reduction modulo ℓ. It is well known that Γ(ℓ) is a free group.
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Proposition 6.6. Let Γ = PSL2(Z) and G = PSL2(R). Let m ≥ 2, let ℓ ≥ 2 be a
multiple of m, and let F = Γ(ℓ). Then the image of PSL2(Z[1/m]) under the map ψ :
CommG(F ) → Comm(F ) lies in Am(F ).

Here CommG(F ) stands for the commensurator of F in G (equivalently, the commen-
surator of Γ in G since F and Γ are commensurable). Recall that no non-trivial element
of G centralizes a finite index subgroup of Γ, so ψ : CommG(F ) → Comm(F ) is injective.

Proof. Throughout the proof we will use the following standard abuse of notation: when
defining a subset of Γ = PSL2(Z) by certain conditions on the matrix entries, we will mean
the image of the corresponding subset of SL2(Z) in Γ.

Let H be the set of matrices

[
a b
c d

]
∈ Γ such that a, d ≡ 1 mod ℓ, ℓ | b and mℓ | c.

By definition, H is contained in F ; further, H is precisely the preimage of the upper-
triangular subgroup of PSL2(Z/mℓZ) under the the reduction modulo mℓ homomorphism
F → PSL2(Z/mℓZ), so H is a subgroup of F . Moreover, since m divides ℓ, a direct
computation shows that H is normal in F and that F/H is cyclic of order m.

Let δm =

[
0 −m−1/2

m1/2 0

]
∈ G. Then δm

[
a b
c d

]
δ−1
m =

[
d −c/m

−mb a

]
. In particular,

δm normalizes H. It follows that if we let ∆ = ⟨Γ, δm⟩ be the subgroup of G generated
by Γ and δm, then ∆ ⊆ CommG(F ). Moreover, the image of Γ under ψ : CommG(F ) →
Comm(F ) lies in Aut(F ), and the image of δm under ψ lies in Aut(H). We have Aut(F ) ⊆
Am(F ) by Lemma 4.6, and since F/H is cyclic of order m, we also have Aut(H) ⊆
Am(F ). Hence ψ(∆) ⊆ Am(F ). So to finish the proof it suffices to show that ∆ contains
PSL2(Z[1/m]).

Let p be a prime divisor of m. We check that ∆ contains PSL2(Z[1/p]). Since the
subgroups PSL2(Z[1/p]) generate PSL2(Z[1/m]) where p ranges over the prime divisors

of m, we will then have PSL2(Z[1/m]) ⊆ ∆. Let u = E21(m/p) =

[
1 0

m/p 1

]
and v =

E12(1/p) =

[
1 1/p
0 1

]
. We have u ∈ Γ and δmuδ

−1
m = v−1, so v ∈ ∆. Hence ⟨Γ, v⟩ ⊆ ∆,

and to complete the proof it suffices to check that

⟨Γ, v⟩ = PSL2(Z[1/p]).
This equality is a consequence of the amalgamated free product decomposition of PSL2(Z[1/p])
(see, e.g., [Ser03, II.1.4 Cor. 2]) but can also be verified directly as follows.

Since Z[1/p] is a PID, the group PSL2(Z[1/p]) is generated by elementary matrices, so
we just need to check that the matrices E12(p

k) and E21(p
k) lie in ⟨Γ, v⟩ for arbitrarily small

k ∈ Z. Since v = E12(1/p), the group ⟨Γ, v⟩ containsD = E12(1/p)E21(−p)E12(1/p)

[
0 −1
1 0

]
which is equal to

[
1/p 0
0 p

]
. Hence

E12(p
2k) = D−kE12(1)D

k and E21(p
2k) = DkE21(1)D

−k

also lie in ⟨Γ, v⟩. □

The following is the main simplicity result of this section. The proof shares the follow-
ing feature with the strategy from [Mar80], [BM00b] and [Cap20] which consists of the
following two independent contributions: we first prove that a non-trivial normal subgroup
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must be relatively large (which here means contains a finite index subgroup of F ), and
then show that any normal subgroup with this property must be the entire group.

Theorem 6.7. Let m ≥ 2, let ℓ be a multiple of m, and let dℓ be the rank of the principal
congruence subgroup Γ(ℓ). If F is a free group of rank dℓ, then the group Sm(F ) is simple.

Proof. LetN be a non-trivial normal subgroup of Sm(F ). Since F has trivial virtual center,
we can apply Lemma 2.13 to G = F endowed with the profinite topology. Lemma 2.13(2)
implies that the intersection N ∩ F is non-trivial. The subgroup N has at most two
Am(F )-conjugates, which intersect F along non-trivial normal subgroups of F , say K1

and K2, and K1 ∩K2 is non-trivial (since it contains [K1,K2]). Hence upon replacing N
by the intersection of its Am(F )-conjugates, we can assume that N is actually normal in
Am(F ).

Let Λ be the image of PSL(2,Z[1/m]) under the map ψ from Proposition 6.6. Then
Λ is isomorphic to PSL(2,Z[1/m]), contains F , and by Proposition 6.6, Λ is contained in
Am(F ). The subgroup N ∩ Λ is non-trivial because N ∩ F is non-trivial, and N ∩ Λ is
normal in Λ because N is normal in Am(F ). Now the only non-trivial normal subgroups
of Λ are the ones of finite index – see Mennicke [Men67] for the case where m is prime and
Serre [Ser70] for the general case (this result is also a consequence of Margulis’ normal
subgroup theorem [Mar79, Mar91]). So N ∩ Λ has finite index in Λ, and we derive in
particular that N contains a finite index subgroup of F . Proposition 6.5 now implies that
N = Sm(F ), as desired. □

Remark 6.8. As mentioned in the introduction, the previously known examples of finitely
generated infinite simple subgroups of Comm(F ) were groups acting properly and cocom-
pactly on product of trees. The groups Sm(F ) seem to be of very different nature. Since
Sm(F ) contains a subgroup isomorphic to SAut(H) for some free group H of rank ≥ 3, by
[Ger94] the group Sm(F ) cannot act properly and cocompactly by isometries on a com-
plete CAT(0) space. More generally, for the same reason Sm(F ) cannot act properly by
semi-simple isometries on a complete CAT(0) space [BH99, 7.18(2)].

Remark 6.9. We believe that Theorem 6.7 remains true for every m ≥ 2 and non-abelian
free groups of every rank. However establishing an analogue of Proposition 6.6 (i.e. proving
the existence of a just-infinite group in Sm(F ) which contains F ) for arbitrary d could be
technically difficult.

We finish this section with an observation relating Proposition 6.6 to a peculiar property
of characteristic subgroups in free groups and some of their finite index subgroups.

Observation 6.10. For each m ≥ 2 there exist infinitely many d ≥ 2 with the following
property. If F is a free group of rank d and H ∈ SCQ(F,m), then no non-trivial subgroup
of H can be characteristic in both H and F .

Proof. Let ℓ and dℓ be as in Theorem 6.7 and set d = dℓ. Recall that Γ(ℓ) denotes the
principal congruence subgroup of level ℓ in PSL2(Z). By Proposition 6.6 there exists an
embedding ψ : PSL2(Z[1/m]) → Am(F ) which maps Γ(ℓ) onto F .

Suppose now that N ⊆ H is characteristic in both H and F . Since Am(F ) is generated
by Aut(F ) and Aut(H) by Lemma 6.2(2), N is normal in Am(F ) and hence ψ−1(N) is
normal in PSL2(Z[1/m]). Since PSL2(Z[1/m]) is just-infinite and ψ−1(N) ⊆ Γ(ℓ) has
infinite index in PSL2(Z[1/m]), we deduce that ψ−1(N) is trivial, as desired. □
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We do not know if the analogue of Observation 6.10 holds for free pro-p groups with
m = p (even for a single value of d) – see Question 4 in Section 12. But what would be
really interesting in view of our results in Section 11 is a positive answer to the following
question:

Let F be a non-abelian free group of finite rank, U a normal subgroup of index p in
F , let F be the pro-p completion of F and U the closure of U in F. Is it true that no
non-trivial subgroup of U is invariant under both Aut(U)and Aut(F )?

As we will see in Section 11, if true, this would solve in the affirmative Question 1
discussed in subsection 1.6 – see Corollaries 11.10 and 11.15.

7. Generation of commensurators by automorphisms of subgroups

Following our general convention, in this section F will denote a non-abelian free group
of finite rank and F a non-abelian free pro-p group of finite rank. We have shown earlier
that SComm(F ) = AComm(F ) and that AComm(F ) is a proper subgroup of Comm(F ).
In this section we consider the corresponding questions for Commp(F ) and Comm(F).
The answers in these two cases will be similar to each other, and somewhat different from
those for the corresponding subgroups of Comm(F ).

Our first result shows that every element of Commp(F ) (resp. Comm(F)) can be written
as a product of automorphisms of p-open subgroups of F (resp. open subgroups of F) and
in fact provides an algorithm for finding such factorization.

Proposition 7.1. Let F be either a non-abelian free group F equipped with the pro-p
topology or a non-abelian free pro-p group F. Let U and V be open subgroups of F of the
same index pn, let f : U → V be an isomorphism and [f ] the corresponding element of
Commp(F ) or Comm(F), respectively. Then there exist open subgroups V = Kn ⊆ . . . ⊆
K0 = F with [Ki : Ki+1] = p and automorphisms f0, f1, . . . , fn such that

(1) f0 ∈ Aut(F);
(2) fi ∈ Aut(Ki) for every 1 ≤ i ≤ n;
(3) [f ] = [fn] · · · [f1][f0].

Moreover, in the case F = F we can ensure that fi ∈ SAut(Ki) for every 1 ≤ i ≤ n.

Proof. We will argue by induction on n. If n = 0, then f ∈ Aut(F), and there is nothing
to prove. Next consider the case n = 1 (in principle, we could go straight to the induction
step, but we present the case n = 1 separately for clarity). In this case U and V are both
normal subgroups of index p. Since Aut(F) acts transitively on normal subgroups of index
p, there exists f0 ∈ Aut(F) such that f0(U) = V . But then f1 = f(f−1

0 )|V ∈ Aut(V ) and
[f ] = [f1][f0]. In the case F = F we shall check the last assertion. If f1 ∈ SAut(V ),
we are done. If f1 ̸∈ SAut(V ), we choose α ∈ Aut(F)V (the stabilizer of V in Aut(F))
whose restriction α|V to V does not lie in SAut(V ) (this is possible by Lemma 4.3(a)).

Then f1α|V ∈ SAut(V ), and replacing f0 by α−1f0 and f1 by f1α|V , we obtain a desired
factorization.

Finally, we treat the general case. Since U and V are open, we can choose normal
subgroups of index p, call them M and N , such that U ⊆ M and V ⊆ N . As in the case
n = 1, there exists f0 ∈ Aut(F) such that f0(M) = N . Then f0(U) and V are both open
subgroups of N of index pn−1. Since h = f(f0

−1)|N sends f0(U) to V , by the induction
hypothesis (applied to Comm(N)), there exist p-open subgroups U = Kn ⊆ . . . ⊆ K1 = N
with [Ki : Ki+1] = p, f1 ∈ Aut(N) and automorphisms fi ∈ Aut(Ki) for 2 ≤ i ≤ n such
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that [h] = [fn] · · · [f1] and hence

[f ] = [h][f0] = [fn] · · · [f1][f0].

In the case F = F we can modify f1 and f0 by a suitable α ∈ Aut(F )N as in the case
n = 1 to ensure f1 ∈ SAut(N). □

Remark 7.2. Apart from the last assertion about SAut, the proof of Proposition 7.1
is not very specific to free groups. The important property used in the proof is that for
every open subgroup U the automorphism group of U acts transitively on the set of normal
subgroups of index p in U .

For the rest of the section we will consider Commp(F) and Comm(F) separately. We
start with the technically easier case of Commp(F ).

7.1. Generation of Commp(F). Recall from subsection 2.3 that we defined ACommp(F )
as the subgroup of Commp(F ) generated by the subgroups Aut(H) where H ranges over
all p-open subgroups of F . The following result is an immediate consequence of Proposi-
tion 7.1:

Corollary 7.3. Commp(F) = ACommp(F).

Definition 7.4. Let us now define SCommp(F ) to be the subgroup of Commp(F ) gener-
ated by SAut(H) where H ranges over all p-open subgroups of F .

Since SAut(F ) has index 2 in Aut(F ), the last assertion Proposition 7.1 implies the
following:

Corollary 7.5. The group SCommp(F) has index at most 2 in Commp(F).

We do not know if SCommp(F) can actually be a proper subgroup of Commp(F). How-
ever, we can prove that SCommp(F) = Commp(F) for some values of p and rk (F ):

Corollary 7.6. Suppose that either p = 2, or that p = 3 mod 4 and d is even. Then
SCommp(Fd) = Commp(Fd).

Proof. Choose any index p normal subgroup H of F . By Lemma 4.3(b), there exists
α ∈ Aut(F ) \ SAut(F ) which stabilizes H and such that α|H ∈ SAut(H). Thus the
subgroup of Comm(F ) generated by SAut(F ) and SAut(H) contains Aut(F ). The equality
SCommp(F) = Commp(F) now follows from Proposition 7.1. □

7.2. Generation of Comm(F). For Comm(F) the analogue of Corollary 7.3 again follows
directly from Proposition 7.1:

Proposition 7.7. Comm(F) = AComm(F), that is, Comm(F) is generated by subgroups
of the form Aut(U) where U is open in F.

Notation 7.8. Similarly to the case of free (abstract) groups, if d = rk (F), we define
SAut(F) as the preimage of SLd(Zp) under the canonical epimorphism π : Aut(F) →
Aut(F/[F,F])) ∼= GLd(Zp).

Note that unlike the case of free groups, SAut(F) has infinite index in Aut(F).

Definition 7.9. We define SComm(F) to be the subgroup of Comm(F) generated by
SAut(U) where U ranges over the open subgroups of F.
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We just proved that [Commp(F ) : SCommp(F )] ≤ 2 for a non-abelian free group F . In
the pro-p case we will establish a similar, albeit slightly weaker result:

Proposition 7.10. The subgroup SComm(F) is normal in Comm(F), and the group
Comm(F)/SComm(F) is a quotient of Z/(p− 1)Z.

In order to prove Proposition 7.10, we will need to obtain a slightly different description
of SComm(F) (Proposition 7.14). To this end, we introduce some additional notations:

(1) Let IA(F) denote the kernel of π : Aut(F) → Aut(F/[F,F])) ∼= GLd(Zp). It is
called the Torelli subgroup. Note that IA(F) = Aut(F; [F,F]) using our notation
from subsection 3.5.

(2) Let IA(F, p) = Aut(F; Φ(F)) be the kernel of πp : Aut(F) → Aut(F/Φ(F))) ∼=
GLd(Fp). It is often called the mod p Torelli subgroup.

(3) Let SAutFp(F) denote the preimage of SLd(Fp) under the map πp : Aut(F) →
GLd(Fp).

Thus, we have the inclusions IA(F) ⊂ IA(F, p) ⊂ SAutFp(F) and IA(F) ⊂ SAut(F) ⊂
SAutFp(F). Note that the subgroups IA(F) and IA(F, p) are pro-p. This is true for IA(F, p)
by Proposition 3.12 and hence also for IA(F) as it is a closed subgroup of IA(F, p). The
group SAutFp(F) is not pro-p, but is still generated by pro-p elements (see Lemma 7.11

below). We say that an element g of a profinite group G is a pro-p element if ⟨g⟩, the
procyclic subgroup generated by g, is a pro-p group.

Lemma 7.11. SAutFp(F) is precisely the subgroup of Aut(F) generated by the pro-p ele-
ments.

Proof. Denote the subgroup of Aut(F) generated by the pro-p elements by Aut+(F).
Recall that IA(F, p) denotes the kernel of the map πp : Aut(F) → GLd(Fp). Since IA(F, p)
is a pro-p group, Aut+(F) contains IA(F, p).

By definition of SAutFp(F) we have SAutFp(F)/IA(F, p)
∼= SLd(Fp). The group SLd(Fp)

is generated by (non-trivial) elementary matrices, each of which has order p. Since IA(F, p)
is pro-p, any lift of any of these elementary matrices to SAutFp(F) is a pro-p element. It

follows that Aut+(F) contains SAutFp(F).
On the other hand, SAutFp(F) is the kernel of a homomorphism from Aut(F) to Z/(p−

1)Z. Since Z/(p − 1)Z has no non-trivial pro-p elements, any pro-p element of Aut(F)
must lie in this kernel, so Aut+(F) ⊆ SAutFp(F). □

As an immediate consequence of Lemma 7.11, we obtain the following result, which can
be seen as a counterpart of Corollary 4.1:

Proposition 7.12. Let U be an open characteristic subgroup of F, so that Aut(F) ⊆
Aut(U) if we view Aut(F) and Aut(U) as subgroups of Comm(F). Then SAutFp(F) ⊆
SAutFp(U).

Remark 7.13. We do not know if Proposition 7.12 remains true if we replace SAutFp by
SAut.

Proposition 7.14. The subgroup SComm(F) contains SAutFp(U) for every open subgroup
U of F. Hence SComm(F) is equal to the subgroup generated by all SAutFp(U).

Proof. By Proposition 7.12, it suffices to prove Proposition 7.14 assuming that U is a
proper open subgroup.
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Take any such U and choose any subgroup V containing U with [V : U] = p. By
the pro-p analogue of Lemma 3.4 (whose proof is identical to the abstract version), there
exists a basis X = {x1, . . . , xm} of V such that U has a basis

Y = {xp1} ∪ {xj1xix
−j
1 : 2 ≤ i ≤ m, 0 ≤ j ≤ p− 1}.

First we will assume that p > 2. The case p = 2 will require minor modifications and
will be handled at the end. The multiplicative group Z×

p is a direct product of 1 + pZp
and the subgroup of roots of unity of order coprime to p, which maps isomorphically onto
F×
p . Since p > 2, we have 1 + pZp ∼= Zp, so Z×

p
∼= Zp × Z/(p − 1)Z is procyclic. For the

rest of the proof we fix a generator ω for Z×
p .

Note that ωp−1 is a generator for the kernel of the projection Z×
p → F×

p , so SAutFp(U)

is precisely the set of φ ∈ Aut(U) with detU(φ) ∈ ⟨ωp−1⟩. As in the case of free groups, by
detU of an element of Aut(U) we mean the determinant of its image in Aut(U/[U,U]).

Let us now consider the automorphisms α and β of V defined by α(x1) = xω1 , α(xi) = xi
for i ̸= 1 and β(x2) = xω2 , β(xi) = xi for i ̸= 2. Then detV(α) = detV(β) = ω, so
α−1β ∈ SAut(V).

We claim that U is invariant under both α and β. Indeed, U is normally generated in
V by the set T = {xp1, x2, . . . , xm}. Clearly, both α and β preserve the procyclic subgroup

⟨g⟩ for each g ∈ T and hence preserve U as well. Thus we can consider both α and β as
automorphisms of U. Let us now compute detU for these automorphisms.

Note that β raises p elements of Y (namely, the conjugates of x2) to the power ω and
fixes the remaining elements of Y , so detU(β) = ωp.

To compute detU(α) we only need to know the elements of α(Y ) modulo [U,U]. Let

r denote the projection of ω to Fp. Then xωj1 = x
pλj
1 x

(rjmod p)
1 for some λj ∈ Zp. Since

xp1 ∈ Y , the element x
pλj
1 lies in U. Hence for any i ̸= 1 we have

(7.1) α(xj1xix
−j
1 ) = xωj1 xi x

−ωj
1 ≡ x

(rjmod p)
1 xi x

−(rjmod p)
1 mod [U,U].

Since ω is a generator of Z×
p , r is a primitive root of unity mod p, so for a fixed i ̸= 1, the

set {xj1xix
−j
1 : 0 ≤ j ≤ p − 1} coincides with {xi, xr1xix

−r
1 , xr

2

1 xi x
−r2
1 , . . . , xr

p−1

1 xi x
−rp−1

1 }
mod [U,U]. By (7.1), α acts on the latter sequence, modulo [U,U], as a cyclic shift, and
this shift is an even permutation since p is odd. Since α(xp1) = (xp1)

ω, using Lemma 3.1(a)
we get detU(α) = ω.

Hence detU(α−1β) = ωp−1, so the set ⟨α−1β⟩SAut(U) consists of all φ ∈ Aut(U)

with detU(φ) ∈ ⟨ωp−1⟩, and by an earlier remark this set is exactly SAutFp(U). Since

α−1β ∈ SAut(V), we proved that SAutFp(U) ⊆ SComm(F), as desired.

Let us now consider the case p = 2. In this case Z×
2 = ⟨−1⟩×C where C ∼= Z2. Choose

a generator ω for C and define α and β as in the case p > 2. The same computation yields
detU(α−1β) = ±ω. The sign depends on the parity of rk (V), but we can replace ω by

−ω since ⟨−1⟩ × ⟨ω⟩ = ⟨−1⟩ × ⟨−ω⟩, so we can assume that detU(α−1β) = ω.

As in the case p > 2, we deduce that SComm(F) contains all φ ∈ Aut(U) with

detU(φ) ∈ ⟨ω⟩. On the other hand, the computation from the proof of Lemma 4.3(b)
for p = 2 shows that SComm(F) contains some γ ∈ Aut(U) with detU(γ) = −1. Since

⟨−1⟩ × ⟨ω⟩ = Z×
2 , it follows that SComm(F) contains the entire SAutFp(U) (which in the

case p = 2 equals Aut(U)). □
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We are finally ready to prove Proposition 7.10.

Proof of Proposition 7.10. First we prove that SComm(F) is normal in Comm(F). By
definition of SComm(F), we just need to show that [φ] SAut(U) [φ]−1 ⊆ SComm(F) for
any open subgroup U of F and [φ] ∈ Comm(F). Let us now fix such U and φ.

As in the proof of Lemma 2.22(b), there exists an open subgroup W which is charac-
teristic in U such that φ is defined on W, and let Z = φ(W). Then ι : ψ 7→ φψφ−1 is
a continuous map from Aut(W) to Aut(Z) and therefore sends pro-p elements to pro-p
elements. Hence by Lemma 7.11 we have ι(SAutFp(W)) ⊆ SAutFp(Z).

Since SAut(U) ⊆ SAut(W) by Proposition 7.12, SAut(W) ⊆ SAutFp(W) (by defini-
tion) and SAutFp(Z) ⊆ SComm(F) by Proposition 7.14, it follows that

ι(SAut(U)) ⊆ ι(SAutFp(W)) ⊆ SAutFp(Z) ⊆ SComm(F).

Thus, [φ] SAut(U) [φ]−1 ⊆ SComm(F), as desired.

If p = 2, we have SAutFp(U) = Aut(U) for any open subgroup U, so Proposition 7.14
already implies that SComm(F) = Comm(F). Thus from now on we will assume that
p > 2.

Now let Q = Comm(F)/SComm(F). As in the proof of Proposition 7.14, fix a generator
ω of Z×

p . For each open subgroup U of F choose βU ∈ Aut(U) with detU(βU) = ω, and
let bU be the image of βU in Q. Note that bU is independent of the choice of βU – indeed,
if β′U is another element with detU(β′U) = ω, then β′Uβ

−1
U ∈ SAut(U) ⊂ SComm(F).

Since βp−1
U ∈ SAutFp(U) ⊂ SComm(F) by Proposition 7.14, bU has finite order (dividing

p − 1), so the image of the procyclic subgroup ⟨βU⟩ in Q is the abstract group ⟨bU⟩ and
hence Q is abstractly generated by all bU .

Suppose now that U and V are open subgroups of F with U ⊂ V and [V : U] = p.
Then the automorphism β from the proof of Proposition 7.14 can be used as βV. By
computation from that proof we have detU(β) = ωp. Hence β = βV is congruent to βpU
modulo SComm(F), so bV = bpU. But bp−1

U = 1 as observed before, so bU = bV.
It follows that bU = bV for any open subgroups U and V of F. Thus Q is generated by

a single element of order dividing p− 1, which finishes the proof. □

8. Conjugacy of elements and subgroups

As before, F will denote a non-abelian free group of finite rank and F a non-abelian free
pro-p group of finite rank. Our main goal in this section is to classify the conjugacy classes
of elements and (topologically) finitely generated closed subgroups of Comm(F),Commp(F)
and Comm(F) that have representatives in F, respectively in F. Since in this section we
will be discussing generation of abstract and profinite groups in the same setting, we
will not follow our standard convention that generation means topological generation for
profinite groups, to avoid confusion.

8.1. Conjugacy of elements in Comm(F ) and Comm(F). Recall that we already
proved in section 5 that any two non-trivial elements of F lie in the same conjugacy
class of Comm(F ). In this subsection we will show that the same is true for the elements
of F inside Comm(F); we will also find a simple necessary and sufficient condition for two
elements of F to be conjugate in Commp(F ). In order to apply these results later in the
paper, it will be more convenient to deal with the conjugacy classes of a slightly larger
collection of elements which we call bounded.



ON COMMENSURATORS OF FREE GROUPS AND FREE PRO-p GROUPS 33

Definition 8.1. Let G be one of the groups Comm(F ), Commp(F ) or Comm(F). An
element g ∈ G will be called bounded if it belongs to some subgroup H of G which is open
and

• free and commensurable with F if G = Comm(F );
• free pro-p and commensurable with F if G = Comm(F);
• free and p-commensurable with F if G = Commp(F ).

It is routine to check that in each case the set of bounded elements is conjugation-
invariant.

Proposition 8.2. Let F = F or F. Then any two non-trivial bounded elements of
Comm(F) are conjugate in Comm(F).

Proof. Let g1, g2 ∈ Comm(F ) be non-trivial bounded elements.
Case 1: g1, g2 ∈ F . In this case the result has already been established in Propo-

sition 5.2. Note that while we only stated Proposition 5.2 for free groups, the result
remains true in the pro-p case with the same proof thanks to Theorem 3.11.

Case 2: g1, g2 belong to the same free subgroup H which is open and commensurable
with F . This case reduces to Case 1 because H and F are virtually isomorphic and hence
we can identify Comm(H) with Comm(F) (as explained in section 2).

General case. By assumption there exist free subgroups H1 and H2 of Comm(F) such
that gi ∈ Hi for i = 1, 2 and H1 and H2 are both open and commensurable with F and
hence commensurable with each other, so in particular, H1 ∩ H2 is non-trivial. If g is
any non-trivial element of H1 ∩H2, then applying Case 2 with H = Hi, we deduce that
g and gi are conjugate in Comm(F) for i = 1, 2 and hence g1 and g2 are conjugate in
Comm(F). □

8.2. Conjugacy of elements in Commp(F ) and applications. The main goal of this
subsection is to establish when two bounded elements of Commp(F ) are conjugate (see
Proposition 8.6). In order to prove it we need a suitable modification of M. Hall’s free
factor theorem dealing with pro-p topology.

Let K be a finitely generated subgroup of F . Recall that by Theorem 3.7, K is a
free factor of some finite index subgroup H of F . Moreover, [HJ49, Theorem 5.1] implies
that K is an intersection of finite index subgroups of F or, equivalently, an intersection
of subgroups open in the profinite topology, and thus K itself is closed in the profinite
topology.

It is natural to ask how the picture changes if the profinite topology is replaced by
the pro-p topology. Recall that subgroups which are open (resp. closed) in the pro-p
topology are called p-open (resp. p-closed). Of course, it is not true that any finitely
generated subgroup K is a free factor of a p-open subgroup or that such K is always
p-closed; however, the last two conditions on K turn out to be equivalent. More generally,
we have the following result of Ribes and Zalesski:

Proposition 8.3 (See [RZ94, Corollary 3.3]). Let K be a finitely generated subgroup of
F. The following hold:

(1) If K is a free factor of a p-closed subgroup of F, then K is p-closed.
(2) If K is p-closed, then there is a p-open subgroup H of F such that K is a free

factor of H.
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We will now establish a sufficient condition for two elements of F to be conjugate in
Commp(F ). This special case will be a key step in the proof of the general conjugacy
criterion (Proposition 8.6), but it will also be sufficient for the proof of virtual simplicity
of Commp(F ) in the next section (see Theorem 9.1).

Lemma 8.4. Any two elements of F which are not proper powers (in F ) are conjugate
in Commp(F ).

Proof. Fix g ∈ F which is not a proper power. Since any two primitive elements of F lie
in the same conjugacy class in Aut(F ) and hence in Commp(F ), it suffices to prove that
g is Commp(F )-conjugate to some primitive element y ∈ F .

Let F be the pro-p completion of F and C the closure of ⟨g⟩ in F. Then C is abelian,
so C ∩ F is also abelian and hence cyclic. Since g is not a proper power, it follows that
C ∩ F = ⟨g⟩, so ⟨g⟩ is p-closed in F . Hence by Proposition 8.3, there exists a p-open
subgroup U of F such that ⟨g⟩ is a free factor of U or, equivalently, g is primitive for U .

Suppose that [F : U ] = pn. Choose any basis X of F and any x ∈ X, and let V =
F (X,x, pn). Then V is p-open, isomorphic to U , and any element y ∈ X \{x} lies in V and
is primitive for both V and F . Since g is primitive for U , we can choose an isomorphism
f : U → V such that f(g) = y, and the corresponding commensuration [f ] ∈ Commp(F )
conjugates g to y, as desired. □

We now turn to the general case of the conjugacy problem for bounded elements in
Commp(F ). Given a bounded element w ∈ Commp(F) \ {1}, define

dp(w) := [⟨w⟩ : ⟨w⟩],

where ⟨w⟩ is the closure of ⟨w⟩ in Commp(F ). We will prove that dp(w) is a complete
invariant for conjugacy of bounded elements (see Proposition 8.6). But first we will obtain
a more explicit description for dp(w).

Lemma 8.5. Let w ∈ Commp(F)\{1} be a bounded element, and let H be a free subgroup
of Commp(F) which contains w and is p-commensurable with F (such H exists by the def-
inition of a bounded element). Write w = vm where m ∈ N and v ∈ H is not representable
as a proper power (in H). Then dp(w) is the largest divisor of m which is coprime to p.

Proof. First note that being p-commensurable with F , the subgroup H is open (and hence

closed) in Commp(F). Hence ⟨w⟩ is contained in H and is equal to the closure of ⟨w⟩ in
H. Since ⟨w⟩ is abelian, it is contained in CH(w), the centralizer of w in H. Since H is
free, CH(w) is cyclic and thus is equal to ⟨v⟩ for v in the statement of Lemma 8.5. On
the other hand, since H is Hausdorff, CH(w) is closed in H (and hence in Commp(F)), so

⟨w⟩ is the closure of ⟨w⟩ = ⟨vm⟩ in CH(w) = ⟨v⟩. Since the induced topology on ⟨v⟩ is the
pro-p topology, this closure is equal to ⟨ve⟩ where e is the largest power of p dividing m, so
dp(w) = [⟨ve⟩ : ⟨vm⟩] = m

e , which is the largest divisor of m coprime to p, as desired. □

We are now ready to prove that the number dp(w) is a complete invariant for conjugacy
of bounded elements.

Proposition 8.6. Let w1, w2 ∈ Commp(F) be non-trivial bounded elements. Then w1 is
conjugate to w2 in Commp(F) if and only if dp(w1) = dp(w2).

Proof. The topology on Commp(F) is conjugation-invariant, so if w1 is conjugate to w2

then certainly dp(w1) = dp(w2).
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Let us now prove the backwards direction. Fix bounded elements w1, w2 ∈ Commp(F)
with dp(w1) = dp(w2) and choose free subgroupsHi, i = 1, 2 such thatHi is p-commensurable
with F and wi ∈ Hi. We need to show that w1 and w2 are conjugate in Commp(F).

Special case: H1 = H2. Since H1 = H2 is p-commensurable with F , the pro-p topologies
of H1 and F are compatible and we can identify Commp(H1) with Commp(F). Thus,
without loss of generality we can assume that H1 = H2 = F , so w1, w2 ∈ F.

If d = dp(w1) = dp(w2), then by Lemma 8.5 for i = 1, 2 we can write wi = vp
eid
i where

v1, v2 ∈ F are not proper powers. Choose any primitive element x ∈ F . By Lemma 8.4,
v1 and v2 are both conjugate to x in Commp(F ). On the other hand, by Lemma 6.4, x is
conjugate in Commp(F ) to x

p and hence also to xp
e
for all e ∈ N. It follows that w1 and

w2 are both conjugate to xd.

General case: The subgroups H1 and H2 are both p-commensurable with F and hence

p-commensurable with each other. Hence there exists n ∈ N such that wp
n

i ∈ H1 ∩H2 for
i = 1, 2. From Lemma 8.5 it is clear that dp(w

pe) = dp(w) for any bounded element w

and e ∈ N. Thus, dp(w
pn

1 ) = dp(w1) = dp(w2) = dp(w
pn

2 ). On the other hand, each pair

(w1, w
pn

1 ), (wp
n

1 , wp
n

2 ), (w2, w
pn

2 ) lies in some free subgroup p-commensurable with F, so by
the special case the elements in each pair are conjugate in Commp(F ), and hence w1 and
w2 are conjugate in Commp(F ). □

We point out an important special case of Proposition 8.6 which describes when two
powers of a bounded element are conjugate in Commp(F ):

Corollary 8.7. Let w ̸= 1 be a bounded element of Commp(F) and m,n ∈ Z non-zero
integers. Then wm is conjugate to wn in Commp(F) if and only if |m/n| = pr for some
r ∈ Z.

Proof. If we write n = pαn′ and m = pβm′ with n′,m′ coprime to p, then dp(w
n) =

|n′|dp(w) and dp(wm) = |m′|dp(w). Hence the assertion follows from Proposition 8.6. □

Instances of pairs (w, c) with w ∈ F and c ∈ Commp(F ) such that cwpc−1 = wp
2

explicitly appear in [BY20].

Remark 8.8. Specializing the result of Corollary 8.7 further, we deduce that for any non-
trivial bounded element w of Commp(F ) there exists c ∈ Commp(F ) such that cwc−1 =
wp, so the subgroup Γ = ⟨c, w⟩ of Commp(F ) is a quotient of the Baumslag–Solitar
group BS(1, p) = ⟨a, b | bab−1 = ap⟩. In fact, the subgroup Γ is isomorphic to BS(1, p)
since w has infinite order in Γ (being an element of a free subgroup), while the image
of a in every proper quotient of BS(1, p) is finite – the latter follows from the fact that
BS(1, 2) ∼= Z[1/p]⋊ Z where a maps to 1 ∈ Z[1/p].

We finish this subsection with a simple applications of Proposition 8.6. The following
result is well known:

Lemma 8.9 ([Sch59]). Let w ∈ F be a non-trivial commutator. Then w is not a proper
power in F. In particular, any non-abelian subgroup of F contains an element that is not
a power.

Corollary 8.10. Let Λ be a non-abelian subgroup of F. Then Λ intersects the conjugacy
class of every bounded element.



36 BARNEA, ERSHOV, LE BOUDEC, REID, VANNACCI, AND WEIGEL

Proof. Lemma 8.9 provides w ∈ Λ such that dp(w) = 1. Let v be any bounded element
of Commp(F) and n = dp(v). Then n is coprime to p by Lemma 8.5, so dp(w

n) = n and
hence v is conjugate to wn ∈ Λ by Proposition 8.6. □

8.3. Conjugacy of finitely generated subgroups. As before, let F be a free group of
finite rank and F a free pro-p group of finite rank. In this subsection we will characterize
when two finitely generated subgroups of F are conjugate in Comm(F ), when two finitely
generated p-closed subgroups of F are conjugate in Commp(F ) and when two finitely
generated closed subgroups of F are conjugate in Comm(F).

Similarly to the corresponding results for the conjugacy of elements, in each case we
will apply a suitable form of the free factor theorem. We will also need two additional
results on the structure of subgroups of free products containing one of the factors.

Lemma 8.11. Let A and B be groups, let G = A ∗ B, and let H be a subgroup of G
containing A. Then H = A ∗K for some group K.

Proof. By the Kurosh subgroup theorem as formulated, e.g. in [Bog08, Ch.2, Theo-
rem 19.1], any subgroupH ofG decomposes as a free product of a free group and subgroups
of the form H ∩ xAx−1 and H ∩ yBy−1 where x (resp. y) ranges over a set of representa-
tives of the double cosets H\G/A (resp. H\G/B). Since we can always let x = 1 to be
one of the representatives, we deduce that H ∩ A is a free factor of H, which yields the
assertion of the lemma. □

In the pro-p case, we will use a more specialized result, dealing only with subgroups of
free pro-p groups:

Lemma 8.12. Let H be a free pro-p factor of F. Then H is also a free pro-p factor of
every open subgroup of F that contains H.

Lemma 8.12 is an immediate consequence of the main theorem of [BNW71].

We are now ready to state and prove our criterion for the conjugacy of subgroups.

Proposition 8.13. Let F = F or F. Let C be either Comm(F) or Commp(F) if F = F
and C = Comm(F) if F = F. Let H1 and H2 be closed subgroups of C which are contained
in F and finitely generated (topologically finitely generated if F = F). Then H1 and H2

are conjugate in C if and only if

(1) rk (H1) = rk (H2) and
(2) if one of H1 and H2 is open in C, then so is the other.

Proof. The ‘only if’ direction is clear, so we only need to prove the converse. Thus,
assume that H1 and H2 satisfy all the hypotheses in Proposition 8.13 including (1) and (2).
Condition (1) ensures that there exists an isomorphism of topological groups φ : H1 → H2.
If H1 and H2 are open then φ induces a virtual isomorphism of F in the appropriate
topology, which corresponds to an element [φ] of C, and then we have [φ]H1[φ

−1] = H2.
From now on we assume that neither H1 nor H2 is open. Then there are open subgroups

K1,K2 of C contained in F such that Ki can be written as a free product Ki = Hi ∗Mi

(in the suitable category) for i = 1, 2. This holds by Theorem 3.7 if C = Comm(F ), by
Theorem 3.11 if C = Comm(F) and by Proposition 8.3(2) if C = Commp(F ) (note that
in the latter case our requirement is that Ki are p-open in F ).

Note that the indices mi = [Ki : K1 ∩ K2] are finite. We have natural projections
πi : Ki → Mi where the kernel is the normal closure of Hi. Since Hi is closed but not
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open, the groups Mi are themselves free (abstract or pro-p) of some nonzero finite rank.
We can then find a subgroup Li of Ki which is the preimage under πi of a normal subgroup
of Mi of index mi: in the cases C = Commp(F) and C = Comm(F) note that mi is a
power of p, so we can choose Li to be p-open in Ki.

It follows that Li and K1 ∩K2 have the same index in Ki, and hence rk (L1) = rk (L2).
From the open case of the proposition, we know that there exists g ∈ C such that gL1g

−1 =
L2, so we may assume L1 = L2. Since Hi is a free factor of Ki for i = 1, 2, it is also a
free factor of L1, by Lemma 8.11 if F = F and by Lemma 8.12 if F = F. In turn, all free
factors of L1 of a given rank belong to the same Aut(L1)-orbit, so there is h ∈ Aut(L1)
which sends H1 to H2. In particular, H1 and H2 are conjugate in C. □

9. Simple subgroups of the commensurator of a free pro-p group

9.1. Simplicity of SCommp(F). Let F be a non-abelian free group of finite rank. Recall
that SCommp(F ) is the subgroup of Commp(F ) generated by all subgroups SAut(H) where
H ranges over p-open subgroups of F . In this subsection we will prove that SCommp(F)
is simple; in fact, we will establish a slightly stronger statement – see Theorem 9.1 below.
Since SCommp(F ) has index at most 2 in Commp(F ) by Corollary 7.5, this will imply
Theorem C.

Theorem 9.1. Every non-trivial subgroup of Commp(F) normalized by SCommp(F) con-
tains SCommp(F).

The proof of Theorem 9.1 will follow the same general outline as that of Theorem 5.4,
except this time we use Lemma 8.4 instead of Proposition 5.2.

Proof of Theorem 9.1. First, since [Commp(F) : SCommp(F)] ≤ 2 by Corollary 7.5, argu-
ing exactly as in the proof of Theorem 6.7, we reduce Theorem 9.1 to the case of normal
subgroups, so let N be a non-trivial normal subgroup of Commp(F ).

By Lemma 2.13 (applied to F equipped with the pro-p topology), the subgroupM = N∩
F is non-trivial. Since Commp(F ) contains Aut(F ), the group M is also characteristic in
F , so in particular, it contains an element that is not a proper power (in F ) by Lemma 8.9.
Since N is normal in Commp(F), by Lemma 8.4M contains a primitive element of F. Since
M is characteristic in F , we must have M = F, so N contains F.

Let now H be a proper p-open subgroup of F . Since rk (H) ≥ 3 and H ⊆ N , Propo-
sition 4.5 is applicable and implies that N contains SAut(K) for every index p normal
subgroup K of H. Applying Lemma 4.6 to H, we deduce that N contains SAut(H).
Applying Lemma 4.6 again, this time to F , we see that N also contains SAut(F ). This
shows that N contains SCommp(F), as desired. □

9.2. A simple locally free pro-p group associated to Commp(F ). Let F be a non-
abelian free group of finite rank and F a free pro-p group of the same rank. As before, we
will identify F with the pro-p completion of F . Recall that the associated homomorphism
Commp(F) → Comm(F) defined in Lemma 2.17 is injective, so we will view Commp(F)
as a subgroup of Comm(F). Likewise we will view Aut(F ) as a subgroup of Aut(F).

Thus, we have already found one natural (abstractly) simple subgroup of Comm(F),
namely SCommp(F). In this subsection we establish that the closure of SCommp(F) in
Comm(F) is also abstractly simple.

Definition 9.2. We denote by Cp(F) (resp. SCp(F)) the closure of Commp(F) (resp.
SCommp(F)) in Comm(F).
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Clearly SCp(F) ⊆ Cp(F), and by Corollary 7.5, the subgroup SCp(F) has index at most 2
in Cp(F). Since F is dense in F and SCommp(F) contains F, the subgroup SCp(F) contains
F. In particular, SCp(F) and Cp(F) are open subgroups of Comm(F), and we have the
following alternative descriptions of those groups:

Observation 9.3. Cp(F) (resp. SCp(F)) is the subgroup of Comm(F) generated by F and
the groups Aut(U) (resp. SAut(U)) where U ranges over p-open subgroups of F .

Note also that Commp(F) being countable, the groups SCp(F) and Cp(F) are σ-compact.

Before proving abstract simplicity of SCp(F) we need some preparations. First, we
will use two well-known results dealing with abstract normal subgroups of finitely gen-
erated pro-p groups. The first result is derived in the course of the proof of [DdSMS99,
Proposition 1.19]:

Lemma 9.4. Let G be a pro-p group generated by a finite set X0. Then the commutator
subgroup [G,G] is abstractly generated by {[x, g] : x ∈ X0, g ∈ G}.

We do not know a reference in the literature for the second result, so we will include a
proof.

Lemma 9.5 (folklore). Let G be a finitely generated pro-p group and N an abstract normal
subgroup of G. If G/N is perfect, then N = G.

Proof. Since G/N is perfect, we have [G,G]N = G. In particular, N surjects onto G/Φ(G)
and hence contains some generating set X for G by Lemma 3.9. By Lemma 9.4, the
commutator subgroup [G,G] is abstractly generated by {[x, g] : x ∈ X, g ∈ G}, so N
contains [G,G]. Hence G/N is both perfect and abelian and thus trivial. □

The next two lemmas deal with subgroups of Comm(F) which have a sufficiently large
normalizer. The first one establishes a dichotomy for subgroups normalized by SAut(F ).

Lemma 9.6. Let N be a subgroup of Comm(F) normalized by SAut(F ) and let K = N∩F.
Then either K ⊆ Φ(F) or KΦ(F) = F.

Proof. The group K = N ∩ F is SAut(F )-invariant and hence so is the quotient K/(K ∩
Φ(F)) ∼= KΦ(F)/Φ(F). On the other hand, SAut(F ) acts transitively on nonzero elements
of F/Φ(F) since this action factors through the standard action of SLd(Fp) on Fdp \ {0}
where d = rk (F ). It follows that either KΦ(F) = F or KΦ(F) = Φ(F), and in the latter
case K ⊆ Φ(F). □

The next lemma yields a stronger conclusion for subgroups normalized by ⟨F, Sp(F)⟩.

Lemma 9.7. Let N be a subgroup of Comm(F) normalized by ⟨F, Sp(F)⟩, and assume
that N ∩ F ̸⊆ Φ(F). Then N contains F.

Proof. As in Lemma 9.6, we set K = N ∩ F, so that K ̸⊆ Φ(F) by our hypotheses.
Hence KΦ(F) = F by Lemma 9.6. Let X be a basis for F. Then K has non-trivial
intersection with the coset Φ(F)x for each x ∈ X, so K contains a generating set X0 for
F by Lemma 3.9(i). Since K is normal in F, it must contain [F,F] by Lemma 9.4. Since
X generates F, we have

F = [F,F] ·
∏
x∈X

⟨x⟩,

and thus it remains to show that K contains ⟨x⟩ for each x ∈ X.
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Fix x ∈ X, and let H be any normal subgroup of index p in F containing x. By
Lemma 3.6(b), H has a free generating set Y containing x and some element y ∈ [H,H].
Since rk (H) ≥ 3, there exists σ ∈ SAut(H) which permutes the elements of Y and sends
x to y. Since N is normalized by Sp(F ), we have

⟨x⟩ = σ−1⟨y⟩σ ⊆ σ−1[F,F]σ ⊆ σ−1Nσ = N.

Hence F ⊆ N . □

We are now ready to prove that SCp(F) is abstractly simple. As with the analogous
result for AComm(F ), we will establish a stronger statement:

Theorem 9.8. Let F be a non-abelian free group of finite rank and F its pro-p completion.
Then every non-trivial subgroup of Comm(F) normalized by SCp(F) contains SCp(F). In
particular, SCp(F) is abstractly simple.

Proof. Let N be a non-trivial subgroup of Comm(F) normalized by SCp(F). We want
to show that SCp(F) ⊆ N . Since SCp(F) is open in Comm(F) and normalizes N , the
subgroup N ∩ F is non-trivial by Lemma 2.13(2).

By Proposition 3.10(b), the Frattini series (Φn(F))∞n=0 has trivial intersection, so N ∩F
cannot be contained in all its terms. Let U = Φℓ(F) be the last term that contains N ∩F.

As usual, we can identify Comm(U) with Comm(F). Also, if we let U = U ∩ F ,
then U can be viewed as the pro-p completion of U and we have ⟨U, Sp(U)⟩ ⊆ SCp(F),
so N is normalized by ⟨U, Sp(U)⟩. Moreover, by the choice of ℓ we have N ∩ U =
N ∩ F ̸⊆ Φ(U), so we can apply Lemma 9.7 to N with U and U playing the role of F
and F, respectively. Thus we deduce that N contains U; in particular N ∩ SCommp(F)
is non-trivial. Since SCommp(F) is simple and normalizes N , it follows that N contains
SCommp(F) and hence contains ⟨U,SCommp(F)⟩ = SCp(F), as desired (the last equality
holds since ⟨U, SCommp(F)⟩ is both open and dense in SCp(F)). □

9.3. On the monolith of Comm(F). As in previous subsection, let F be a non-abelian
free group of finite rank and F its pro-p completion. Theorem G restated as Corollary 9.9
below is an immediate consequence of Theorem 9.8.

Corollary 9.9. The group Comm(F) is monolithic and its monolith is simple. Moreover,
Mon(Comm(F)) is equal to the (abstract) normal closure of SCp(F) in Comm(F).

Proof. Let N denote the normal closure of SCp(F) in Comm(F). Theorem 9.8 implies
that Comm(F) is monolithic and its monolith M = Mon(Comm(F)) contains SCp(F) and
hence contains N . On the other hand, since N is normal and non-trivial, it must contain
M , so N =M .

Since M contains SCp(F), we can apply Theorem 9.8 again, now to M , and deduce
that M is also monolithic. The monolith of M is characteristic in M and hence normal in
Comm(F). Hence Mon(M) =M , so M is simple. □

Corollary 9.9 does not give us much information about the size of the monolith of
Comm(F). In particular, we do not know whether Mon(Comm(F)) is equal to Comm(F)
or at least has finite index in Comm(F). Nevertheless, we will prove that Mon(Comm(F))
is substantially larger than SCp(F) and, in particular, the index [Mon(Comm(F)) : F] is
uncountable (see Proposition 9.12 below).

In the remainder of this section we consider the group Aut(F) with the A-topology
defined in subsection 3.5, which makes Aut(F) a profinite group. Note that the A-topology
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is not the restriction to Aut(F) of the topology on Comm(F): while F is an open subgroup
of Comm(F), it is not open in the A-topology on Aut(F). However F is closed in Aut(F)
with respect to the A-topology. Recall also that we identify Aut(F) with its image in
Aut(F).

Notation 9.10. Denote by SA(F ) the closure of SAut(F) in Aut(F) with respect to the
A-topology.

The following key lemma provides a substantial restriction on the structure of proper
abstract normal subgroups of SA(F ).

Lemma 9.11. Assume that rk (F ) ≥ 3, and let K be an abstract normal subgroup of
SA(F ) whose image in Aut(F/Φ(F)) ∼= GLd(Fp) contains a non-scalar matrix. Then
K = SA(F ).

Proof. Let d = rk (F ) and π : Aut(F) → GLd(Fp) the projection homomorphism. Also let
G = SA(F ). It is clear that π is continuous with respect to the A-topology on Aut(F) and
discrete topology on GLd(Fp). Since π(SAut(F)) = SLd(Fp), we have π(G) = SLd(Fp) as
well. Hence π(K) is a normal subgroup of SLd(Fp), which is not contained in the center
by assumption, so π(K) = SLd(Fp) = π(G). Thus, if we set P = Kerπ ∩G, then G = K.
Also note that P is a pro-p group by Proposition 3.12.

Since SAut(F) is a finitely generated group which is perfect by Lemma 3.1(c), G is a
finitely generated profinite group which is topologically perfect. By a fundamental theorem
of Nikolov and Segal, the commutator subgroup of a finitely generated profinite group is
closed (this is a special case of [NS07, Theorem 1.4]), so G is perfect (as an abstract group),
and hence so is G/K.

The equality G = PK implies that G/K is a quotient of P . Since G is finitely generated
and P is open in G (as Kerπ is open in Aut(F)), P is also finitely generated. But a finitely
generated pro-p group cannot have a non-trivial perfect abstract quotient by Lemma 9.5.
Therefore G/K is trivial. □

Using Lemma 9.11, we can now construct another simple subgroup of Comm(F ) strictly
containing SCp(F). For each p-open subgroup U of F let U be its closure in F, and let
SA(U) denote the closure of SAut(U) in Aut(U) (with respect to the A-topology).

Proposition 9.12. In the above notations assume that rk (F ) ≥ 3, and let G be the
subgroup of Comm(F) generated by the groups SA(U) where U ranges over all p-open
subgroups of F . Then G is simple and is contained in Mon(Comm(F)).

Proof. The second assertion follows from the first one and the fact that the intersection
G ∩ Mon(Comm(F)) is non-trivial (for instance, since it contains F ).

Let us now prove that G is simple. Let N be a non-trivial normal subgroup of G. Since
G contains SCp(F), it follows from Theorem 9.8 that N contains SCp(F), so in particular
N contains SAut(U) for every p-open subgroup U of F.

Now fix such a subgroup U and letU be its closure in F. The composite map SAut(U) →
SAut(U) → SAut(U/[U,U]Up) is surjective. Since N ∩ SA(U) is a normal subgroup of
SA(U) which contains SAut(U), we can apply Lemma 9.11 to K = N ∩ SA(U) (with U
playing the role of F ) to conclude that N ∩ SA(U) = SA(U). Thus, N contains SA(U).
Since this is true for any p-open subgroup U of F , we deduce that N = G, as desired. □
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10. Dependency on the rank and automorphisms of the p-commensurator

In this section we will prove Theorems D and E restated below as Theorems 10.1 and 10.2,
respectively. As before, throughout the section F will denote a non-abelian free group of
finite rank.

Theorem 10.1. Let p, q be prime numbers, let k, ℓ ≥ 2, and let Fk and Fℓ be free groups of
rank k and ℓ, respectively. Then the groups Commp(Fk) and Commq(Fℓ) are isomorphic
if and only if p = q and there exists s ∈ Z such that (k − 1)/(ℓ− 1) = ps.

Theorem 10.2. Every automorphism of Commp(F) is inner.

10.1. Commensurated subgroups. We first consider finitely generated commensurated
subgroups of Commp(F). The following proposition is well known, but we could not locate
a proof in the literature.

Proposition 10.3. Let Λ be an infinite finitely generated commensurated subgroup of F.
Then Λ has finite index in F.

Proof. By Theorem 3.7, the subgroup Λ is a free factor of a finite index subgroup H of F.
In particular, Λ is malnormal in H. Since H is commensurated, this implies that either Λ
is finite or Λ = H. □

We will also use the following, which can easily be derived from [Wil94, Proposition 4].

Proposition 10.4. Let Γ be a group with a commensurated subgroup Λ. Suppose that
x ∈ Γ is conjugate to xn for some n ≥ 2. Then x normalizes a subgroup Λ′ of Γ such that
Λ and Λ′ are commensurable.

Proof. Let G be the Schlichting completion of Γ with respect to Λ ([Sch80]), that is, if we
write π : Γ → Sym(Γ/Λ) for the left translation action of Γ on Γ/Λ, then G is the closure
of π(Γ) in Sym(Γ/Λ) with respect to the topology of pointwise convergence. Since Λ is
commensurated by Γ, the closure of Λ in G is a profinite open subgroup, so G is a totally
disconnected locally compact group (see [SW13, § 3] or [EW18, § 5]).

If t ∈ Γ is such that txt−1 = xn, then by induction (t−kxtk)n
k
= x for every k ∈ N.

Hence the element x is infinitely divisible, and by [Wil94, Proposition 4], it follows that
π(x) normalizes a compact open subgroup U of G. The preimage of U in Γ satisfies the
conclusion. □

Lemma 10.5. Let Λ be an infinite finitely generated commensurated subgroup of Commp(F).
Then Λ ∩ F is non-trivial.

Proof. Let N denote the set of elements of Commp(F) that centralize a finite index sub-
group of Λ. Since Λ is commensurated, N is a normal subgroup of Commp(F). By
Theorem 9.1, N is either trivial or contains SCommp(F). In particular, if N is non-trivial,
then N contains F. Since F is finitely generated, this implies that F centralizes a finite
index subgroup of Λ. But F has trivial centralizer in Commp(F), so the trivial subgroup
has finite index in Λ and thus Λ is finite, contrary to the hypotheses. Hence N is trivial.

Fix x ∈ F \ {1}. By Proposition 8.6, x is conjugate to xp in Commp(F), and hence
by Proposition 10.4, x normalizes a subgroup commensurable with Λ. Without loss of
generality we can assume that x normalizes Λ. Now since F is commensurated, for every
h ∈ Λ the index [F : F ∩ hFh−1] is finite, and hence there exists n(h) ∈ N such that

hxn(h)h−1 ∈ F. It follows that [h, xn(h)] ∈ Λ ∩ F, and it remains to show that [h, xn(h)] is
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non-trivial for some h. Suppose, on the contrary, that [h, xn(h)] is trivial for every h ∈ Λ.
Since Λ is finitely generated, there is a non-trivial power of x that centralizes Λ. This is
a contradiction with the first paragraph. □

We say a subgroup H ⊆ G is virtually normal if there is a normal subgroup N of G
such that N ⊆ H and |H : N | is finite; equivalently, the intersection of all G-conjugates
of H has finite index in H. We appeal to the main theorem of [CKRW20], which will help
to obtain a restriction on commensurated subgroups of Commp(F) contained in F.

Theorem 10.6 (Main Theorem, [CKRW20]). Let Γ be a group, and let Λ be a commen-
surated subgroup of Γ such that Γ is generated by finitely many cosets of Λ. Then the
intersection of all virtually normal subgroups containing Λ is itself virtually normal in Γ.

Proposition 10.7. Let Λ be an infinite subgroup of F such that Λ is commensurated in
Commp(F). Then the closure of Λ is a p-open subgroup of F.

Proof. Since the closure of a commensurated subgroup remains commensurated, it is
enough to prove the statement assuming that Λ is p-closed. It then suffices to show that Λ
has finite index in F. If Λ is finitely generated, it has finite index in F by Proposition 10.3,
so from now on we will assume that Λ is not finitely generated.

The assumption that Λ is p-closed implies that Λ is an intersection of finite index (in
particular, virtually normal) subgroups of F. Hence by Theorem 10.6, Λ is virtually normal
in F, that is, the intersection N of all F-conjugates of Λ has finite index in Λ.

Since N is non-abelian (as it is non-trivial and normal in F ), by Lemma 8.9 there
exists x ∈ N which is not a proper power in F . By the proof of Lemma 8.4, x is a
primitive element of some p-open subgroup H of F . In particular, there exists a surjective
homomorphism H → Z such that the image of x generates Z. If K is the kernel of this
homomorphism, then K is p-closed but not p-open and H ⊆ NK. Moreover, since F is
finitely generated, so is H; thus we can take a finitely generated subgroup K0 of K such
that H ⊆ NK0. Let K1 be the closure of K0 in F (with respect to the pro-p topology).
Since K0 is finitely generated, so is K1 by [RZ94, Proposition 3.4]. Further, we have
K1 ⊆ K, so K1 is not p-open in F.

Let r be the rank of K1. Since Λ is not finitely generated, it admits a free factor Λ1 of
rank r. Being a free factor of a p-closed subgroup of F, the subgroup Λ1 is p-closed in F
by Proposition 8.3(1). Since neither Λ1 nor K1 is p-open, we are therefore in position to
apply Proposition 8.13, which asserts that there is c ∈ Commp(F) such that cΛ1c

−1 = K1.
In particular, K1 ⊆ cΛc−1. Since Λ ∩ cΛc−1 has finite index in cΛc−1, it follows that
Λ ∩K1 has finite index in K1. Since H ⊆ NK1, we deduce that Λ contains a finite index
subgroup of F, namely N(Λ ∩K1). □

Combining Lemma 10.5 with Proposition 10.7 yields the following.

Corollary 10.8. Let Λ be an infinite finitely generated commensurated subgroup of Commp(F).
Then the closure of Λ ∩ F is p-open in F.

Proof. By Lemma 10.5, the group Λ′ = Λ∩F is non-trivial, hence infinite as F is torsion-
free. The conclusion then follows from Proposition 10.7. □

A tdlc group G is residually discrete if for every non-trivial g ∈ G there exists a discrete
group Q and a continuous surjective homomorphism φ : G → Q such that φ(g) ̸= 1.
Equivalently, the intersection of all non-trivial open normal subgroups of G is the trivial
subgroup. The following is [CM11, Corollary 4.1].



ON COMMENSURATORS OF FREE GROUPS AND FREE PRO-p GROUPS 43

Theorem 10.9. Let G be a compactly generated residually discrete tdlc group. Then for
every compact open subgroup U of G there exists a finite index open subgroup V of U such
that V is normal in G.

Proposition 10.10. Let H be a commensurated subgroup of a group C. Let G be a tdlc
group, and suppose that ψ : C → G is an injective homomorphism with dense image, and
that the only closed normal subgroup of G contained in J = ψ(H) is the trivial subgroup.
Let L be a finitely generated subgroup of H. Then for every compact open subgroup U of
G, L normalizes a finite index subgroup of ψ−1(U ∩ ψ(L)).

Proof. Let J = ψ(H). Since ψ(H) is commensurated by ψ(C), one easily verifies that J
is also commensurated by ψ(C). Set

K =
⋂
c∈C

ψ(c)Jψ(c)−1.

The subgroup K is closed and normalized by the dense subgroup ψ(C), so it follows
that K is normal in G. Moreover, K is contained in J , so by the assumption K must
be trivial. Since all the conjugates ψ(c)Jψ(c)−1 are commensurable with each other, it
follows that J is residually finite, so in particular residually discrete. Now if L is a finitely
generated subgroup of H, the subgroup J ′ = ψ(L) is a residually discrete tdlc group which
is also compactly generated (as it is locally compact and admits a finitely generated dense
subgroup. Therefore Theorem 10.9 applies to J ′. If U is a compact open subgroup of
G, then U ∩ J ′ is a compact open subgroup of J ′ and hence contains a finite index open
subgroup that is normal in J ′. Taking the preimage in C provides the conclusion. □

10.2. Isomorphisms between p-commensurators of free groups. Our next result
will be key to proving Theorems 10.1 and 10.2.

Proposition 10.11. Let F and F ′ be free groups of finite rank, and suppose that ψ :
Commp(F

′) → Commp(F) is an isomorphism. Then ψ(F ′) is p-commensurable with F.

Before proving Proposition 10.11, we record a general lemma which must be well known,
but we are not aware of a reference where it is stated as below.

Lemma 10.12. Let G be a tdlc group whose compact open subgroups are topologically
finitely generated. Assume that g, x ∈ G \ {1} are such that the sequence (gnxg−n)∞n=1

converges to 1. Then g cannot normalize any compact open subgroup of G.

Proof. Suppose, on the contrary, that g normalizes some compact open subgroup U of
G. Since U is topologically finitely generated, it is hereditarily characteristically based by
Lemma 2.21. In particular, there exists an open characteristic subgroup V of U which
does not contain x. Since g normalizes U , it must also normalize V . Thus, gnxg−n ̸∈ V
for all n ∈ N, which contradicts our hypothesis since V is open. □

Proof of Proposition 10.11. For simplicity we write C = Commp(F) and G = Cp(F). Re-
call that we view C as a subgroup of G; the closure of F in G is the free pro-p group F.
We also set H = ψ(F ′) and let J = H be the closure of H in G. We will divide the proof
in several steps.

Step 1: J is open in G. The subgroup H is finitely generated and is commensurated
in C. Consider the subgroup Λ = F ∩ H. By Lemma 10.5 Λ is non-trivial. Being the
intersection of two commensurated subgroups, Λ is commensurated in C. Moreover, by
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Corollary 10.8, the closure of Λ in C is p-open in F. Thus Λ is dense in an open subgroup
of F, and hence J contains an open subgroup of F, showing that J is open in G.

Step 2: Every element of H is conjugate in C to an element of F. Applying Corol-
lary 8.10 inside Commp(F

′) to the subgroup ψ−1(Λ), we infer that every element of F ′ is
conjugate in Commp(F

′) to an element of ψ−1(Λ). Applying ψ yields that every element
of H is conjugate in C to an element of Λ, which in particular implies the assertion of
Step 2.

Step 3: J has infinite index in G. Step 2 implies that every element of H normalizes
some conjugate of F in G. In any tdlc group, the union of normalizers of compact open
subgroups is closed. (This is an immediate consequence of the continuity of Willis’ scale
function – see [Wil94, Corollary 4].) Thus each element of J normalizes some compact
open subgroup of G.

On the other hand, by Proposition 8.6, there exist g ∈ C and x ∈ F \ {1} such that
gxg−1 = xp and hence gnxg−n = xp

n
for all n ∈ N. By Lemma 10.12, g cannot normalize

any compact open subgroups of G, and moreover, the same is true for gk for all k ∈ N.
Thus, by the previous paragraph, gk ̸∈ J for all k ∈ N and hence [G : J ] is infinite.

Step 4: H lies inside Aut(K) for some finite index subgroup K of F . By Theorem 9.8,
any non-trivial normal subgroup of G = Cp(F) contains SCp(F) and thus has index at most
2 in G. Hence by Step 3, J does not contain any non-trivial normal subgroup of G, and
we can apply Proposition 10.10 (with L = H). Together with the fact that J is open in
G, the proposition implies that H normalizes a finite index subgroup K of F. This means
that viewed inside C, the subgroup H lies inside Aut(K), as desired.

Step 5: H and F are commensurable. The group Out(K) is virtually torsion-free by
[BT68]. Let A be the preimage in Aut(K) of a finite index torsion-free subgroup of Out(K).
Let h ∈ H ∩ A. There is c ∈ C such that h ∈ cFc−1. Since cFc−1 is commensurable with
F, there is n ≥ 1 such that hn ∈ F, and upon enlarging n we have hn ∈ K. Since A has
torsion-free image in Out(K), we deduce that h ∈ K and hence H ∩ A ⊆ K. Since A
has finite index in Aut(K), it follows that H is virtually contained in K. Thus H ∩ K
is a commensurated subgroup of K that is commensurable with H and hence finitely
generated. This implies that H ∩K has finite index in K by Proposition 10.3. Therefore,
H and K, and hence H and F, are commensurable.

Step 6: H and F are p-commensurable. By definition we need to show that H ∩ F is
p-open in both F and H. Both assertions can be proved similarly, so we will only do the
first one. Recall that a finite index subgroup of a group Γ is open in the pro-p topology
on Γ if and only if every element has a p-power that belongs to Γ. We already know by
Step 5 that H ∩ F has finite index in F , so it remains to show that every x ∈ F has a
p-power in H ∩ F (equivalently, a p-power in H).

By Corollary 8.10, there is c ∈ C such that x ∈ cΛc−1. Now sinceH is p-commensurated
(Lemma 2.19), H ∩ cHc−1 is p-open in cHc−1, so H ∩ cΛc−1 is p-open in cΛc−1. Hence x
has a p-power in H ∩ cΛc−1 ⊆ H, as desired. □

We are now ready to prove Theorems 10.1 and 10.2.

Proof of Theorem 10.1. Suppose that ψ : Commq(Fℓ) → Commp(Fk) is an isomorphism.
We first show that p = q. Arguing as in the beginning of the proof of Proposition 10.11,
we see that Fk ∩ ψ(Fℓ) is not trivial. Let w ∈ Fk ∩ ψ(Fℓ) be a non-trivial element. By
Corollary 8.7, w and wp are conjugate in Commp(Fk). Hence the same holds for ψ−1(w)
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and ψ−1(wp), and applying Corollary 8.7 in the group Commq(Fℓ) yields that the primes
p and q must be equal.

For an integer i ≥ 2 we let

rp(i) = 1 +
i− 1

pα

where pα is the largest power of p dividing i − 1. Given i, j ∈ Z we have rp(i) = rp(j) if
and only if (i − 1)/(j − 1) = ps for some s ∈ Z. We also note that rp(i) is the smallest
rank of a free subgroup of Commp(Fi) that is p-commensurable with Fi.

Since ψ maps the p-commensurability class of Fℓ onto the p-commensurability class
of Fk by Proposition 10.11, we conclude that rp(k) = rp(ℓ). This proves the forward
direction of Theorem 10.1. The converse implication is clear as if rp(k) = rp(ℓ) = r, then
Commp(Fk) and Commp(Fℓ) are both isomorphic to Commp(Fr). □

Proof of Theorem 10.2. Let α ∈ Aut(Commp(F)). We want to show that α is inner or,
equivalently, α can be made trivial after composition with inner automorphisms.

The subgroup α(F) is free of the same rank as F , and by Proposition 10.11 α(F) is
p-commensurable with F. By Proposition 8.13 this implies that α(F) = cFc−1 for some
c ∈ Commp(F). Hence upon composing α with an inner automorphism of Commp(F )
(namely, conjugation by c−1), we can assume α(F) = F. In that situation it follows
that α induces an automorphism of F, call it φ. Viewing φ as an inner automorphism
of Commp(F ) and composing α with φ−1, we can assume that α is the identity on F.
Lemma 2.10 applied to the topological group Commp(F) (and with U = V = Commp(F))
implies that every such automorphism is trivial, as desired. □

11. A family of compactly generated simple groups

In this section we will prove Theorem H. This theorem has several parts which will be
established as separate statements: part (i) holds by Observation 11.2, (ii) is Observa-
tion 11.4, (iii) holds by Theorem 11.5, (iv) is Proposition 11.12(1)(2), (v) is a combination
of Corollary 11.6 and Proposition 11.12(3), and (vi) is part of Corollary 11.15.

Let F be a non-abelian free group of finite rank d and F its pro-p completion. As before,
we identify F with its image in F, and we also view the group Commp(F) as a subgroup of
Comm(F). The majority of results in this section will require the additional assumption
(p, d) ̸= (2, 2) (which will always be stated explicitly).

Recall that in section 6 we introduced a natural family of finitely generated subgroups
of Comm(F ), denoted by Sm(F ), and showed that these groups are simple under some
conditions on m and rk (F ). In this section we consider an analogous problem inside the
totally disconnected group Comm(F): we will define certain compactly generated open
subgroups of Comm(F), and our primary goal is to determine whether such groups can
be (abstractly) simple or at least close to being simple.

Also recall that the finitely generated simple subgroups Sp(F ) of Comm(F ) constructed
in section 6 are contained in the subgroup SCommp(F ) which itself was shown to be simple
in section 9. Further, the group SCp(F), defined as the closure of SCommp(F ) in Comm(F),
is open in Comm(F) and also simple by Theorem 9.8. Thus, in view of the above goal, it
is natural to focus our attention in this section on compactly generated open subgroups
contained in SCp(F).

The group SCp(F) admits a natural ascending sequence of compactly generated open
subgroups (Ln), each containing F, whose union is equal to SCp(F). The main result of
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this section yields a normal subgroup Mn of Ln such that the quotient Qn = Ln/Mn is
abstractly simple (Theorem 11.5). The subgroupMn is relatively small – it is an extension
of a compact group Kn contained in F by a discrete group. It is possible that Mn = Kn

(so in particular Mn is compact). It is actually possible that Mn is the trivial subgroup;
we do not know whether this is the case. Denote the image of the free pro-p group F in
Qn by F (n) – it is a compact open subgroup of Qn. We will see that the following three
conditions are equivalent:

(i) Mn is trivial;
(ii) Kn is trivial;
(iii) F (n) is a free pro-p group.

Further, we will show that whether these equivalent conditions hold for n large enough is an
intrinsic property of the group SCp(F) (Corollary 11.15). Although we did not manage to
elucidate whether the latter is true or not, we establish a number of properties of the groups
F (n) which suggest that F (n) are rich and interesting pro-p groups (Proposition 11.12).

11.1. Construction and abstract simplicity of the groups Qn. We start with several
definitions.

Definition 11.1. For n ≥ 1 let

• Sp,n(F ) be the subgroup of Commp(F ) generated by the subgroups SAut(H) where
H ranges over all p-open subgroups of F of index ≤ pn;

• Ln = ⟨F, Sp,n(F )⟩, the subgroup of Comm(F) generated by F and Sp,n(F ).

Since F ⊆ Sp,n(F ) and F is dense in F while F is open in Comm(F), the group Ln is
equal to the closure of Sp,n(F ) in Comm(F). The following result is immediate from the
definitions:

Observation 11.2. The group SCommp(F) is the ascending union
⋃
n≥1 Sp,n(F ), and the

group SCp(F) is the ascending union
⋃
n≥1 Ln.

Note that by Lemma 6.2(1), we have Sp,1(F ) = Sp(F ). In particular, L1 is the group
⟨F, Sp(F)⟩ that appeared in Lemma 9.7. Also observe that Sp,n(F ) is generated by the
subgroups Sp(H) where H ranges over p-open subgroups of F of index at most pn−1.

Definition 11.3. Let Kn denote the normal core of F in Ln.

Observation 11.4. The sequence (Kn) is descending and has trivial intersection.

Proof. The sequence (Kn) is descending since (Ln) is ascending, and the intersection⋂
n≥1

Kn is trivial since
⋃
n≥1 Ln = SCp(F) is simple by Theorem 9.8. □

Observation 11.4 also follows from Corollary 11.10 below, which will provide an alter-
native characterization of the subgroups Kn.

Let us now consider the groups

Pn = Ln/Kn and F (n) = F/Kn.

Note that F (n) is a compact open subgroup of Pn, and therefore we have a homomorphism
πn : Pn → Comm(F (n)). Let Qn denote the image of πn. The kernel of πn is QZ(Pn),
the quasi-center of Pn, so Qn ∼= Pn/QZ(Pn). As we will see in the following statement,
QZ(Pn) is a discrete subgroup of Pn, and hence Qn is a tdlc group.

The following theorem is the main result of this section.
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Theorem 11.5. Suppose (d, p) ̸= (2, 2), and let n ≥ 1. The following hold:

(a) The group F (n) has trivial quasi-center. Therefore QZ(Pn) is a discrete subgroup
of Pn, and F (n) can be identified with a compact open subgroup of Qn.

(b) The group Qn is a non-discrete compactly generated abstractly simple tdlc group.

Let us point out a simple but important consequence of Theorem 11.5.

Corollary 11.6. Suppose (d, p) ̸= (2, 2), and let n ≥ 1. Then Ln is abstractly simple if
and only if Kn is trivial.

Proof. The ‘only if’ direction is clear. Suppose now that Kn is trivial, so that Pn =
Ln. Note that Ln has trivial quasi-center by Lemma 2.13(1). Thus QZ(Pn) = {1},
and hence Ln = Pn = Pn/QZ(Pn) is isomorphic to Qn which is abstractly simple by
Theorem 11.5(b). □

Before proving Theorem 11.5 we will establish two auxiliary results.

Lemma 11.7. Suppose (d, p) ̸= (2, 2). If N is an open normal subgroup of Ln, then
N = Ln.

Proof. Since N is open in Ln, it contains an open subgroup of F and hence contains a
p-open subgroup of F . Now let H be any p-open subgroup of F with [F : H] ≤ pn−1, so
that Sp(H) ⊆ Sp,n(F ) ⊆ Ln. Since N and Sp(H) both contain a finite index subgroup of
F (and hence so does their intersection N ∩ Sp(H)), we can apply Proposition 6.5 to the
normal subgroup N ∩ Sp(H) of Sp(H) and deduce that Sp(H) ⊆ N .

Thus, we proved that N contains Sp(H) for every p-open subgroup H of F of index at
most pn−1. As we observed earlier, the subgroups Sp(H) for such H generate Sp,n(F ), so
N contains Sp,n(F ). Since Sp,n(F ) is a dense subgroup of Ln and since N is open and
hence closed in Ln, it follows that N = Ln. □

Notation 11.8. For n ≥ 0, we denote by Un the set of open subgroups of F of index at
most pn.

Observe that since intersecting with F defines a bijection between open subgroups of F
of index pn and p-open subgroups of F of index pn, Sp,n(F ) can equivalently be described
as the subgroup generated by SAut(U ∩ F ) where U ranges over Un.
Proposition 11.9. Suppose (d, p) ̸= (2, 2) and let N be a proper (not necessarily closed)
normal subgroup of Ln. The following hold:

(a) N ∩U ⊆ Φ(U) for every U ∈ Un−1;
(b) N ∩ F is normal in Ln and N ∩ F ⊆ Kn.

Proof. (a) Suppose that N ∩U ̸⊆ Φ(U) for some U ∈ Un−1. We note that Comm(F) =
Comm(U) and N is normalized by the subgroup ⟨U, Sp(U)⟩ of Ln. Applying Lemma 9.7,
we deduce that N contains U, so N is open, and then Lemma 11.7 implies that N = Ln,
a contradiction.

(b) The assertion of (a) can be reformulated as follows: for every U ∈ Un−1 and every
index p subgroup V of U we have N ∩U = N ∩V. Since every U ∈ Un can be connected
to F by a chain of subgroups in which every subgroup has index p in the next one, it
follows that N ∩ F = N ∩U for every U ∈ Un. Since both N and U are normalized by
SAut(U ∩ F ), it follows that N ∩ F is normalized by SAut(U ∩ F ) for every U ∈ Un and
hence is normal in Ln. Since Kn is the largest normal subgroup of Ln contained in F, we
conclude that N ∩ F ⊆ Kn. □
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As an easy consequence of Proposition 11.9, we obtain an alternative description of the
subgroups Kn:

Corollary 11.10. The group Kn is the largest subgroup of F which is

(a) contained in every U ∈ Un and
(b) invariant under SAut(U ∩ F ) for every U ∈ Un.

Proof. First we explain why Kn satisfies (a) and (b). Note that (a) must hold for (b) to be
a meaningful statement, but once (a) is established, (b) is automatic since by assumption
Kn is normal in Ln. Property (a) for Kn follows from Proposition 11.9(a) by induction
on the index [F : U] starting with the equality Kn = Kn ∩ F (which holds by definition).

Now let N be any subgroup of F satisfying (a) and (b). Then the same is true for N , the
closure ofN . By (b) the normalizer ofN in Comm(F) contains F (since F ⊆ SAut(F )) and
hence also F (since N is closed). Thus by (b), N is normal in ⟨F,

⋃
U∈Un

SAut(U∩F )⟩ = Ln

and hence N ⊆ N = N ∩ F is contained in Kn by Proposition 11.9(b). □

We are now ready to prove Theorem 11.5.

Proof of Theorem 11.5. (a) Note that QZ(F (n)) = QZ(Pn) ∩ F (n) since F (n) is an open
subgroup of Pn, so let us prove that QZ(Pn) ∩ F (n) = {1}.

Suppose first that QZ(Pn) = Pn. By [CM11, Prop. 4.3] (see also [BEW11, Thm 4.8]),
a compactly generated tdlc group with dense quasi-center has a base of neighborhoods of
the identity consisting of compact open normal subgroups. In particular, this would imply
that Pn has a proper open normal subgroup, and hence the same would be true for Ln,
contrary to Lemma 11.7.

Thus, QZ(Pn) ̸= Pn, and if ρ : Ln → Pn is the canonical projection, then Mn =
ρ−1(QZ(Pn)) is a proper normal subgroup of Ln. Proposition 11.9 then implies that
Mn ∩ F ⊆ Kn. Hence

ρ−1(QZ(Pn) ∩ F (n)) = ρ−1(QZ(Pn)) ∩ ρ−1(F (n)) =Mn ∩ F ⊆ Kn

and therefore QZ(Pn) ∩ F (n) = {1}, as desired.
(b) The group F (n) is pro-p and clearly non-trivial. Since we just showed that F (n)

has trivial quasi-center, it must be infinite and also can be identified with its image in
Comm(F (n)). Thus, Qn contains the infinite pro-p group F (n) as an open subgroup, so in
particular, Qn is tdlc and non-discrete. It remains to show that Qn is abstractly simple.

Let N be a non-trivial normal subgroup of Qn. Since F (n) has trivial quasi-center, by
Lemma 2.13(2) the intersection N ∩ F (n) is non-trivial. Hence if π : Ln → Qn is the
canonical map, then π−1(N) ∩ F ̸⊆ Kn, and Proposition 11.9 implies that π−1(N) = Ln
whence N = Qn, as desired. □

11.2. Additional properties of the groups F (n). We have already proved that F (n)
is a non-trivial pro-p group with trivial quasi-center; in particular, it is not torsion and
not nilpotent. The following lemma provides alternative proofs of these facts but has the
advantage of producing explicit elements which do not lie in K1 (and hence also in Kn for
all n ∈ N).

Lemma 11.11. The following hold:

(a) Assume that d ≥ 2, and let x1 be a primitive element of F . Then xp
k

1 ̸∈ K1 for
any k ∈ N.
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(b) Assume that d ≥ 3 and {x1, x2} is a subset of a basis of F . Then the left-normed

commutator hk = [x2, x1, x
p
1, x

p2

1 , . . . , x
pk−1

1 ] does not lie in K1 for any k ∈ N.

Proof. (a) First note that K1 is contained in
⋂

U∈U1

U = Φ(F), so x1 ̸∈ K1. On the other

hand, by Proposition 6.4, x1 is conjugate in Sp(F ) (and hence in L1) to x
p
1 and hence to

xp
k

1 for any k ∈ N. These two facts imply (a) since K1 is normal in L1.

(b) Let X be any basis of F containing x1 and x2 and choose any x3 ∈ X \ {x1, x2}
(this is possible since d ≥ 3 by assumption). For i = 1 and i = 3 let Ui = F (X0, xi, p), the
unique subgroup of index p in F which contains X0 \ {xi}. Then Si = {[xj , xi, . . . , xi︸ ︷︷ ︸

k times

] :

j ̸= i, 0 ≤ k ≤ p− 1} ∪ {xpi } is a basis for Ui by Lemma 3.6(b). Since S1 contains xp1 and
[x2, x1] while S3 contains x1 and x2, there exists an isomorphism φ : U1 → U3 such that
φ(xp1) = x1 and φ([x2, x1]) = x2.

Now for each k ∈ N consider the left-normed commutator hk = [x2, x1, x
p
1, x

p2

1 , . . . , x
pk−1

1 ].
Then φ is defined on each hk and φ(hk) = hk−1 for all k ≥ 2, so φk(hk) = x2 for all k ∈ N.
Since K1 does not contain x2, as explained in (a), and K1 is φ-invariant, it follows that
K1 does not contain hk for any k. □

Recall that the sequence of compact subgroups (Kn) is decreasing and has trivial in-
tersection. We do not know whether Kn is trivial for n large enough or whether Kn is
trivial for every n ≥ 1. The condition that Kn is trivial is equivalent to saying that F (n)
is a free pro-p group (see item (3) below). The following proposition shows that F (n) has
several properties which are typical for the free pro-p group of rank d. This can either be
seen as evidence that F (n) is free pro-p or, in case F (n) is not free pro-p, that F (n) is not
isomorphic to any previously studied group.

Proposition 11.12. Suppose that d ≥ 3, and let n ≥ 1. The following hold:

(1) The minimal number of generators of F (n) is d, and every d-generated group of
order pj for j ≤ n+ 1 occurs as a quotient of F (n).

(2) For all 1 ≤ j ≤ n+ 1 any two subgroups of index pj in F (n) are isomorphic.
(3) Let m,n ∈ N. Then F (m) ∼= F (n) if and only if Km = Kn, and F (n) is a free

pro-p group if and only if Kn = {1}.

Proof. (1) Proposition 11.9 applied with N = Kn yields Kn ⊆ Φ(U) for every U ∈ Un. In
particular, we have F (n)/Φ(F (n)) ≃ F/Φ(F), and hence the minimal number of generators
of F (n) is d. If P is a d-generated group finite p-group, then by the universal property
of free pro-p groups, there is a continuous surjective homomorphism πP : F → P . If in
addition, |P | ≤ pn+1, then kerπP contains Φ(U) for some U ∈ Un, so Kn ⊆ kerπP , and
hence πP factors through a surjective homomorphism from F (n) to P . This completes the
proof of (1).

(2) Given two subgroups of F (n) of the same index pj with 1 ≤ j ≤ n + 1, we can
represent them as U1/Kn and U2/Kn where U1 and U2 are subgroups of index pj in F.
Since Kn is normalized by Sp,n(F ), to prove that U1/Kn

∼= U2/Kn it suffices to show
that U1 and U2 are Sp,n(F )-conjugate.

Suppose first that j ≤ n and write Ui = Ui ∩ F. Then U1 and U2 both have index
pj in F, so they are free groups of the same rank; hence there exists an isomorphism φ



50 BARNEA, ERSHOV, LE BOUDEC, REID, VANNACCI, AND WEIGEL

from U1 to U2. Arguing as in the proof of Proposition 7.1, we deduce that φ is realized
by conjugating by some γ ∈ Sp,n(F ); by continuity, it follows that γU1γ

−1 = U2.
For j = n+1, choose a subgroup Vi of index p

n containing Ui for i = 1, 2. By the j = n
case there exists γ ∈ Sp,n(F ) such that γV1γ

−1 = V2. Then γU1γ
−1 and U2 are both

index p subgroups ofV2, so there exists φ ∈ SAut(V2∩F ) such that φ(γU1γ
−1)φ−1 = U2.

Since SAut(V2 ∩ F ) ⊆ Sp,n(F ), the subgroups U1 and U2 are conjugate by the element
φγ ∈ Sp,n(F ), as desired.

(3) We may assume m < n, which means that Kn ⊆ Km, and hence there is a quotient
homomorphism θ : F (n) → F (m) with kernel Km/Kn. If Km = Kn, then clearly θ is
an isomorphism. On the other hand, since F (n) is a finitely generated pro-p group, it is
Hopfian, so if θ is not injective (in other words, Km ̸= Kn), then F (m) is not isomorphic
to F (n). Similarly, since F is Hopfian, we have F (n) ∼= F if and only if Kn is trivial.
Finally, by (1), if F (n) is free pro-p, it must be free of rank d and thus isomorphic to
F. □

11.3. Consequences of Theorem 11.5. Let F be a non-abelian free pro-p group of finite
rank. Recall that Question 1 formulated in the introduction has a positive answer for F
if and only if Comm(F) has a compactly generated topologically simple open subgroup
containing F. Earlier in this section we considered the groups Ln as potential candidates
for such a subgroup. Recall that each Ln is contained in SCp(F) and that SCp(F) =

⋃
n≥1

Ln.

We will now show that if one is trying to find an answer to Question 1 within SCp(F),
there is no loss of generality in restricting to the groups Ln (see Corollary 11.15 below).

We will use the following terminology.

Definition 11.13. We will say that a topological group L has (NCNS) if L has no non-
trivial compact normal subgroup.

We will need a simple general observation.

Lemma 11.14. Let G be a profinite group with trivial quasi-center.

(1) If L is an open subgroup of Comm(G) which has (NCNS), then any subgroup L′

of Comm(G) containing L also has (NCNS).
(2) Suppose G is torsion-free. Then an open subgroup L of Comm(F) has (NCNS) if

and only if there exists a compact open subgroup U of L such that the normal core
of U in L is trivial.

Proof. (1). Let K be any compact normal subgroup of L′. Then K ∩ L is compact and
normal in L and hence is trivial. Since L is open and K is compact, this implies that K is
finite. Hence K is a finite subgroup of Comm(G) whose normalizer is open. This implies
that K lies in the quasi-center of Comm(G). Since the latter is trivial by Lemma 2.10, K
is trivial.

(2). The ‘only if’ direction is clear. Suppose now that U is a compact open subgroup
of L with trivial normal core in L. This is equivalent to saying that L acts faithfully on
the set Ω = L/U . Let K be any compact normal subgroup of L. Since U is open and K is
compact, every K-orbit in Ω is finite. Since K is normal in L, the L-action preserves the
partition of Ω into K-orbits, and since L acts transitively on Ω, L also acts transitively on
the set of K-orbits. It follows that there is finite group A such that the K-action induces a
homomorphism K →

∏
I A, which is injective since the L-action is faithful. In particular,
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K is torsion. Since we assume that G is torsion-free, the intersection K ∩ G must be
trivial. Hence K is finite. For the same reason as in the proof of (1), K is trivial. □

Corollary 11.15. The following are equivalent:

(1) There exists a compactly generated open subgroup L of SCp(F) which has property
(NCNS).

(2) There exists a compactly generated open subgroup L of SCp(F) which is topologically
simple.

(3) For all sufficiently large n the subgroup Kn is trivial.
(4) For all sufficiently large n the group Ln is abstractly simple.

Proof. The implications (4) ⇒ (2) ⇒ (1) are immediate, and the implication (3) ⇒ (4)
holds by Corollary 11.6.

“(1)⇒ (3)” Suppose L is as in (1). Since L is compactly generated and SCp(F) is equal

to the ascending union
∞⋃
n=1

Ln by Observation 11.2, we have L ⊆ Ln for sufficiently large

n. By Lemma 11.14(1), Ln has (NCNS) for any such n, so (3) holds. □

Question 2. Are the equivalent conditions of Corollary 11.15 true or false ?

12. Questions

12.1. (NCNS) for compactly generated open subgroups of Comm(F). For an infi-
nite tdlc group L, being topologically simple always implies L has no non-trivial compact
normal subgroup. Thus, the following problem is a weaker form of Question 1 (reformu-
lated in terms of subgroups of Comm(F)):

Problem 3. Let F be a free pro-p group of finite rank. Find a compactly generated open
subgroup L of Comm(F) which has no non-trivial compact normal subgroup.

As before, we abbreviate ’no non-trivial compact normal subgroup’ as (NCNS). Using
some general arguments, we can reformulate Problem 3 as follows:

Proposition 12.1. Let F be a non-abelian free pro-p group of finite rank. The following
are equivalent:

(a) Comm(F) has a compactly generated open subgroup with (NCNS).
(b) There exists a compactly generated group L with the following properties:

(1) L has a compact open subgroup isomorphic to F;
(2) L has (NCNS);
(3) L has no non-trivial discrete normal subgroup.

Proof. “(a)⇒(b)” Suppose that L ⊆ Comm(F) is a compactly generated open subgroup
with (NCNS). By Lemma 11.14(1), we can assume that L contains F, in which case L
satisfies (1) and (2), and it remains to check (3). Since F has trivial quasi-center and L
is open in Comm(F), by Lemma 2.13(1) the group L also has trivial quasi-center. On
the other hand, a discrete normal subgroup is always contained in the quasi-center, so L
satisfies (3).

“(b)⇒(a)” Now suppose that L has properties (1), (2) and (3). By (1), we can apply
Proposition 2.8 which yields a continuous homomorphism ψ : L → Comm(F) with open
image and discrete kernel. Property (3) now implies that ker(ψ) is trivial. Hence the image
of L in Comm(F) is isomorphic to L as a topological group and is therefore a solution to
Problem 3 by (2). □
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Even leaving condition (3) aside, we do not know if there exists a compactly generated
group L satisfying (1) and (2).

Using the equality Comm(F) = AComm(F) established in Proposition 7.7, we can
reformulate Problem 3 in a rather different way:

Proposition 12.2 (Reformulation of Problem 3). The following are equivalent:

(1) Comm(F) has a compactly generated open subgroup with (NCNS).
(2) There exist finite collections {Ui}ri=1 of open subgroups of F and automorphisms

φi ∈ Aut(Ui) for 1 ≤ i ≤ r such that no nontrivial normal subgroup of F is
contained in every Ui and invariant under every φi.

Proof. We will use the following notation: for every finite collection of automorphisms
A = {φi ∈ Aut(Ui)}ri=1 as above (where each Ui is open in F) we define LA to be
the subgroup of Comm(F) generated by F and A. Then by definition LA is compactly
generated and open in Comm(F).

“(2)⇒ (1)”. Suppose (2) holds for some finite set A = {φi ∈ Aut(Ui)}ri=1, and let
U = ∩Ui. The normal core of U in LA is normal in F, contained in every Ui and
invariant under every φ ∈ A. Hence by our hypotheses this normal core is trivial. By
Lemma 11.14(2) this implies that LA has (NCNS). We can indeed invoke Lemma 11.14(2)
here since a free pro-p group is torsion-free.

“(1)⇒(2)”. Now suppose (1) holds. Ordered by inclusion, the subsets A as above form
a directed set, the subgroups (LA)A form a directed system, and Proposition 7.7 says that
Comm(F) =

⋃
A LA is their directed union. Hence if L is a compactly generated open

subgroup of Comm(F), then L ⊆ LA for some A. If we take L satisfying (1), then LA also
satisfies (1) by Lemma 11.14. Hence (2) holds. □

12.2. Further questions. In this subsection we discuss several additional questions mo-
tivated by the results of the paper.

Subgroups invariant by the automorphism group of finite index subgroups.
Recall from Observation 6.10 (applied with m = p) that if F is a free group and H is a
normal subgroup of F of index p, then no non-trivial subgroup of H can be characteristic
in both H and F (at least for some values of rk (F )). We do not know if the analogous
property holds for free pro-p groups. More generally, one can ask the following:

Question 4. Let F be a non-abelian free pro-p group of finite rank. Can one find a finite
collection U = {U1, . . . ,Un} of open subgroups of F including F itself such that the only
subgroup of F which is contained in Ui and characteristic in Ui for every i is the trivial
subgroup?

The difference between the reformulation of Problem 3 from Proposition 12.2 and Ques-
tion 4 is that in Proposition 12.2 the requirement is invariance under finitely many auto-
morphisms, while in Question 4 the requirement is invariance under the whole Aut(Ui) for
every i. Since the automorphism group of a free pro-p group is not topologically finitely
generated with respect to the A-topology [Rom93], these two properties are indeed differ-
ent. In particular, a positive answer to Question 4 may not have an immediate impact
with respect to Problem 3.
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Quotients of Comm(F ). Recall that the subgroup AComm(G) is normal in Comm(G)
whenever G is finitely generated. If F is a non-abelian free group of finite rank, by
Theorem A every proper quotient of Comm(F ) is a quotient of Comm(F )/AComm(F )
and Comm(F )/AComm(F ) is infinite.

Question 5. What else can be said about the quotient Comm(F )/AComm(F )?

As a starting point, one can ask whether this quotient is non-abelian or whether it is
finitely generated.

Simplicity of Comm(F). Let F be a non-abelian free pro-p group of finite rank. Recall
that by Corollary 9.9, Comm(F) is monolithic and Mon(Comm(F)) is abstractly simple,
but we do not know how large Mon(Comm(F)) is and lack an explicit description for it.

Question 6.

(a) Is Mon(Comm(F)) = Comm(F)? Equivalently, is Comm(F) abstractly simple?
(b) If the asnwer to (a) is negative, is the quotient Comm(F)/Mon(Comm(F)) finite?

Equivalently, is Comm(F) virtually abstractly simple?

Note that Mon(Comm(F)) is contained in SComm(F) since SComm(F) is normal
in Comm(F). Also recall that the quotient Comm(F)/SComm(F) is finite. Therefore
Question 6(a) has a positive answer if and only if SComm(F) is abstractly simple and
SComm(F) = Comm(F).

On the other hand, one can ask whether Mon(Comm(F)) equals the group G from
Proposition 9.12 (we know that Mon(Comm(F)) contains this G). This seems unlikely,
but answering the question in the negative would still be interesting as it might help find
a more explicit description of Mon(Comm(F)).

One result used in the proof of Theorem A was the fact that for a free group F with
rk (F ) ≥ 3, the group SAut(F ) is perfect.

Question 7. Let F be a free pro-p group of finite rank at least 3.

(a) Is SAut(F) abstractly perfect?
(b) Is SAut(F) topologically perfect with respect to the A-topology?

Even a positive answer to Question 7(b) would have an interesting consequence for
SComm(F), namely, it would imply that SComm(F) is topologically simple with respect
to the Aut-topology defined in [BEW11].6 Indeed, if SAut(F) is topologically perfect with
respect to the A-topology, the analogue of Lemma 9.11 remains true if SA(F ) is replaced
by SAut(F) and the normal subgroup N is assumed closed (with minimal changes to the
proof), and then one can deduce that SComm(F) with the Aut-topology is topologically
simple arguing as in Proposition 9.12.

Dependency on the rank for Comm(F). Now recall that Theorem 10.1 completely
determines the isomorphism class of the p-commensurator Commp(F ) as a function of p
and rk (F ). Our next question asks whether the analogue of this theorem holds for the
commensurators of free pro-p groups, for a fixed p:

Question 8. Given integers d, e > 1, let Fd and Fe be free pro-p groups of ranks d and
e, respectively. For which values of d and e are the groups Comm(Fd) and Comm(Fe)
isomorphic as abstract groups?

6The Aut-topology on Comm(F) is the strongest topology which makes all the maps ιU : Aut(U) →
Comm(F), with U open in F, continuous with respect to the A-topology.
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It is natural to expect the same answer as in Theorem 10.1. Indeed, by the Schreier
formula Fd and Fe are virtually isomorphic if and only if d−1

e−1 = pj for some j ∈ Z.
Thus if the latter condition on d and e holds, Comm(Fd) and Comm(Fe) are definitely
isomorphic, even as topological groups. If the condition does not hold, it is not hard
to show that Comm(Fd) and Comm(Fe) cannot be isomorphic as topological groups.
Hence showing that every isomorphism between Comm(Fd) and Comm(Fe) is necessarily
continuous would solve Question 8.

On the local structure of Qn. Our last question deals with the tdlc groups Qn con-
structed in Section 11. Recall that the groups Qn are abstractly simple, and the main
question left open in Section 11 is whether the compact open subgroup F (n) of Qn is a
free pro-p group. A related problem is to determine the type of the groups Qn according
to the classification in [CRW17].

Following the notation in [CRW17], let S denote the class of non-discrete topologically
simple compactly generated tdlc groups. According to [CRW17, § 1.4, § 6], any abstractly
simple group S in S belongs to exactly one of the following three classes, which can be
distinguished by the isomorphism type of any compact open subgroup:

(1) (Locally h.j.i.) Some (and hence every) compact open subgroup of S is hereditarily
just-infinite.

(2) (Micro-supported) S has a minimal strongly proximal micro-supported action on
the Cantor set.

(3) (NPF type) Any group not belonging to the other two classes.

Omitting the precise definition of NPF type, we just mention that S is of NPF type if and
only if

(i) S has an infinite non-open compact locally normal subgroup and
(ii) no two infinite compact locally normal subgroups commute elementwise.

Here a subgroup is called locally normal if it has open normalizer. It would be reasonable
to expect NPF type to be the ‘generic’ case. However, at the time of writing, there are
no examples of groups in S that have been proven to be of NPF type. Many topological
Kac–Moody groups over finite fields are conjectured to have NPF type.

It is straightforward to show that if there exists S ∈ S containing a non-abelian free pro-
p group F as an open subgroup, then S has NPF type. So if the compact open subgroup
F (n) of Qn happens to be free pro-p, then Qn would in particular produce examples of
groups of NPF type. In any case, it is natural to ask the following:

Question 9. Do the groups Qn have NPF type, at least for sufficiently large n?
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[BH99] Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature, Grundlehren
der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol.
319, Springer-Verlag, Berlin, 1999. MR 1744486

[BK90] H. Bass and R. Kulkarni, Uniform tree lattices, J. Amer. Math. Soc. 3 (1990), no. 4, 843–902.
[BM00a] Marc Burger and Shahar Mozes, Groups acting on trees: from local to global structure, Inst.

Hautes Études Sci. Publ. Math. (2000), no. 92, 113–150 (2001). MR 1839488



ON COMMENSURATORS OF FREE GROUPS AND FREE PRO-p GROUPS 55

[BM00b] , Lattices in product of trees, Inst. Hautes Études Sci. Publ. Math. (2000), no. 92,
151–194 (2001). MR 1839489

[BNW71] E. Binz, J. Neukirch, and G. H. Wenzel, A subgroup theorem for free products of pro-finite
groups, J. Algebra 19 (1971), 104–109. MR 280598

[Bog08] Oleg Bogopolski, Introduction to group theory, EMS Textbooks in Mathematics, European
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