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Abstract. If G is a finitely generated group and X a G-set, the growth of the action of
G on X is the function that measures the largest cardinality of a ball of radius n in the
Schreier graph ΓpG,Xq. In this note we consider the following stability problem: if G,H
are finitely generated groups admitting a faithful action of growth bounded above by a
function f , does the free product G ˚H also admit a faithful action of growth bounded
above by f? We show that the answer is positive under additional assumptions, and
negative in general. In the negative direction, our counter-examples are obtained with G
either the commutator subgroup of the topological full group of a minimal and expansive
homeomorphism of the Cantor space; or G a Houghton group. In both cases, the group
G admits a faithful action of linear growth, and we show that G ˚H admits no faithful
action of subquadratic growth provided H is non-trivial. In the positive direction, we
describe a class of groups that admit actions of linear growth and is closed under free
products and exhibit examples within this class, among which the Grigorchuk group.

1. Introduction

Let G be a finitely generated group, equipped with some finite symmetric generating set
S (implicit in what follows). For a G-set X, we denote by ΓpG,Xq the Schreier graph of
the action, with vertex set X and edges px, sxq for x P X and s P S. Note that we do
not assume the action of G on X to be transitive, so that the graph ΓpG,Xq need not be
connected. Let volG,X : NÑ N be the function that measures the volume of the largest ball
appearing in ΓpG,Xq:

volG,Xpnq “ max
xPX

|BGpnq ¨ x|,

where BGpnq denotes the ball of radius n around the identity in G with respect to the word
metric associated to S. For two functions f1, f2 : N Ñ N, we write f1pnq ď f2pnq if there
exists C ą 0 such that f1pnq ď Cf2pCnq, and f1pnq » f2pnq if f1pnq ď f2pnq ď f1pnq.
The function volG,Xpnq does not depend on the choice of the generating set S up to the
equivalence relation ».

Definition 1.1. Given a function f : N Ñ N, we denote by Cpfq the class of finitely
generated groups G such that there exists a faithful G-set X such that volG,Xpnq ď fpnq.

It is not hard to see that the class Cpfq is stable under taking finitely generated subgroups,
and under passing to a finite index overgroup [LBMB22a, §1.3]. We use the special notation
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Cplinq for the distinguished case fpnq » n, which is the slowest possible growth for a faithful
action of an infinite group. The class Cplinq is richer than it might look at first sight. It is
not hard to check that it contains all virtually abelian groups. The fact that non-abelian
free groups belong to Cplinq is well-known and can be traced back to Schreier [Sch27]. A
famous example of a group in Cplinq is the Grigorchuk group (and all Grigorchuk groups
Gω from [Gri84]), see Bartholdi and Grigorchuk [BG00]. Many other interesting groups of
dynamical origin are naturally given by an action of linear growth (and hence belong to
Cplinq): topological full groups of homeomorphisms of the Cantor set, and Nekrashevych’s
fragmentation of dihedral groups [Nek18]. More examples of groups in Cplinq include the
lamplighter group Cp o Z, the Houghton groups, or Neumann’s groups from [Neu37].

In [Sal21] the third author investigated the class of subgroups of the topological full
group of full shifts over Z (which is contained in Cplinq), and gave sufficient conditions
under which graph products of such groups remain inside that class [Sal21, Theorem 3].
That result implies in particular that the class Cplinq contains all right angled Artin groups
[Sal21, Theorem 1], and hence all their subgroups as well. Combined with results of many
authors, this is a vast source of examples of groups in Cplinq, as many groups are known
to embed (upon to passing to a finite index subgroup) in a right angled Artin groups. For
example, this is the case for instance surface groups, and more generally any hyperbolic
group acting geometrically on a CAT(0) cube complex, as follows from Agol’s final step in
the solution of the virtual Haken conjecture [Ago13] combined with the previous results of
Haglund and Wise [HW08].

Motivated by this last class of examples, we consider here the question whether the
class Cplinq (or the classes Cpfq for more general f) is closed under free products, or more
generally graph products. There is a natural strategy to attempt to answer that question
affirmatively. Given two groups G1 and G2 and Xi a Gi-set, i “ 1, 2, one may consider any
set X “ X1 \A1–φA2 X2 obtained by identifying suitable subsets A1 Ă X1 and A2 Ă X2

via a bijection φ : A1 Ñ A2. The action of each Gi extends to X trivially outside of the
copy of Xi in X. This defines an action of the free product G “ G1 ˚ G2. On the one
hand, if the subsets along which the Xi are glued are chosen wisely, one can hope to control
the growth function volG,Xpnq in terms of volGi,Xipnq, i “ 1, 2. On the other hand, if the
gluing is sufficiently generic, the action of G on X is likely to be faithful. The question
therefore becomes whether, for G1, G2 in Cpfq, the tension between these two conditions
can be conciliated. A naive implementation of this strategy (suitably adapted to more
general graph products) gives the following. We refer to §2.1 for the definition of graph
products.

Proposition 1 (Proposition 2.7). Let G1, . . . , Gk P Cpfq. Then the free product G “

G1 ˚ ¨ ¨ ¨ ˚ Gk belongs to Cpgq, where gpnq “ nfpnq. More generally, any graph product of
the Gi’s belongs to Cpgq.

Proposition 1 is very often not optimal. In many cases, appropriate choices allow to
show that a graph product of groups in Cpfq remains in Cpfq. In §2.3 we discuss a sufficient
condition for this to be the case. That condition is an elaboration of a condition considered
in [Sal21]. Proposition 2.13 provides in particular a direct and elementary proof of the fact
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that right-angled Artin groups belong to Cplinq (which essentially follows the same lines as
the proof in [Sal21], but avoids the technicalities coming from the full group setting). More
generally, Proposition 2.13 allows to exhibit examples of graph products in the class Cplinq:

Proposition 2. The free product G1 ˚ ¨ ¨ ¨ ˚Gk belongs to Cplinq whenever each free factor
Gi is isomorphic to one of the following:

‚ a finite group;
‚ a finitely generated abelian group;
‚ a finitely generated subgroup of a right-angled Artin group;
‚ the Grigorchuk group;
‚ the lamplighter group pZ{pZq o Z for p ě 2.

More generally, the graph product of any finite family of groups in the list above belongs to
Cplinq.

1.1. The main results. The main goal of this note is to provide examples that show that
the bound obtained from the simple construction from Proposition 1 is sharp in general,
even for free products. We consider two families of examples.

The first are topological full groups of minimal group actions on the Cantor set, more
precisely their alternating subgroups in the sense of Nekrashevych [Nek19] (see §3.4 for
definitions). Following [LBMB22a], we shall say that a finitely generated group G has a
Schreier growth gap fpnq if every faithful G-set X satisfies volG,Xpnq ě fpnq.

Theorem 1. Let G ñ X be a minimal expansive action of a finitely generated group on the
Cantor set, and set fpnq “ volG,Xpnq. Let G be the alternating full group of the action (so
that G is finitely generated and belongs to Cpfpnqq, see §3.4). Then for every non-trivial
finitely generated group H, the group G ˚H has a Schreier growth gap nfpnq.

A relevant special case in the previous theorem is G “ Z (in that case G coincides with
the commutator subgroup of the topological full group, by the results of Matui [Mat06]).
In that case we obtain examples of groups G P Cplinq such that G˚H has a Schreier growth
gap n2 for any non-trivial group H. The quadratic gap is optimal in general, as Proposition
1 says that G ˚H has a faithful action of growth » n2 for instance when H is cyclic and
non-trivial.

Our second family of examples are the Houghton groups Hr, r ě 2. The group Hr is
finitely generated and belongs to Cplinq for every r ě 2 (see §3.3).

Theorem 2. Let G “ Hr be the Houghton group on r ě 2 rays. Then for every non-trivial
finitely generated group H, the group G ˚H has a Schreier growth gap n2.

1.2. Outline of the proof of Theorems 1 and 2. . These two results share the same
proof mechanism. It relies on the description of the confined subgroups of the groups G
in their statements, obtained in previous works of the first two authors. Recall that a
subgroup H of a group G is confined if the set of conjugates of H does not accumulate on
the trivial subgroup in the space SubpGq of subgroups of G, endowed with the Chabauty
topology. When G is finitely generated, convergence in the space SubpGq can be interpreted
in the space of marked Schreier graphs on the corresponding coset spaces G{H. The study
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of confined subgroups of a group G leads (among other applications) to results on the
growth function volG,Xpnq of G-actions, such as the existence of a Schreier growth gap
[MB18, LBMB23, LBMB22a]. For G as in Theorem 1 or 2, a classification of the confined
subgroups of G has been obtained respectively in [MB18] and [LBMB22a]. Using these
results, we show that every faithful action of G whose growth is close to the growth of the
natural defining action of G (respectively on the Cantor set or on the bouquet of rays), must
be “almost” conjugate to it. A common feature of the two situations is that the group G
contains elements whose support is a very sparse subset of the Schreier graph of the natural
action. We exploit this fact and the previous result about actions of small growth of G to
show that in the graph for any faithful action of G ˚H, there must be short jumps between
regions that are far in the graph of the restricted action of G. This is that phenomenon
that forces an additional factor n in the growth. The detailed proofs are given in Section 3.

It is worth comparing the case of the Grigorchuk group in Proposition 2 with Theorem
1. The Grigorchuk group and topological full groups share various common features: in
particular they appear through a micro-supported action on a compact space, a condition
which plays an important role in the study of confined subgroups (indeed the confined
subgroups of the Grigorchuk group are also understood [LBMB23]). Also Theorem 1 is
applicable to many fragmentations of dihedral groups in the sense of Nekrashevych [Nek18]
(a family of groups to which the Grigorchuk group also belongs). Despite these similarities,
here they exhibit an opposite behaviour. The main reason for this difference is the fact
that its action on the vertices of the binary tree satisfies a condition that we call large
displacement (Definition 2.9), which means that every non-trivial element of the group
must move some vertex of the tree by a distance (on the Schreier graph of the corresponding
level) comparable to the total diameter of the Schreier graph (Proposition 2.14). Although
the proof of this fact is not difficult, it relies on rather specific features of the Grigorchuk
group.

2. Stability results

2.1. Graph products. Let I be a set, and let ∆ denote the diagonal in I2. Let c : I2z∆ Ñ

t0, 1u such that cpi, jq “ cpj, iq for all i ‰ j. If pGiqiPI a family of groups indexed by I, the
graph product P “ pGiqciPI of the family pGiqiPI associated to c is the quotient of the free
product ˚IGi by the relations rGi, Gjs for all i, j such that cpi, jq “ 1. We say that P is a
finite graph product if I is finite.

2.2. Preliminaries.

Definition 2.1. Let q ě 1. Let pX1, . . . , Xqq “ pXkqkďq be a q-tuple of graphs, and
for every k ď q let pek, skq be two distinct points of Xk. The gluing of the q-tuple
pXk, ek, skqkďq is the graph obtained by taking the disjoint union X1 \ ¨ ¨ ¨ \ Xq, and
identifying sk and ek`1 for every 1 ď k ď q ´ 1. It is denoted GppXk, ek, skqkďqq.

(The points e1 and sq do not play any role, but we keep two based points in X1 and
Xq as well in order to simplify notation.) Note that for every k ď q the map from Xk

to GppXk, ek, skqkďqq is a graph isomorphism onto its image. In the sequel we identify Xk
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with its image in GppXk, ek, skqkďqq. Note also that the condition ek ‰ sk ensures that the
images of Xk and Xk`r in GppXk, ek, skqkďqq are disjoint for all r ě 2.

Lemma 2.2. Let pXkqkďq be a q-tuple of graphs, and suppose that every ball of radius
n ě 1 in Xk has cardinality at most fpnq for every k ď q. Then every ball of radius n in
GppXk, ek, skqkďqq has cardinality at most p2n` 1q ¨ fpnq.

Proof. Every ball B of radius n in GppXk, ek, skqkďqq intersects at most 2n` 1 members of
pXkqkďq, and is covered by 2n`1 balls of radius at most n within these Xk. The statement
follows. �

In the sequel we fix a set I, a function c : I2z∆ Ñ t0, 1u such that cpi, jq “ cpj, iq for
all i ‰ j, and a family of graphs F such that F admits a partition indexed by I, with
blocks denoted Fi, i P I. For X P F , we write ipXq for the unique element of I such that
X P FipXq.

Definition 2.3. A q-tuple pXkqkďq of elements of F is c-admissible if ipXkq ‰ ipXk`1q

and cpipXkq, ipXk`1qq “ 0 for every k “ 1, . . . , q ´ 1. By extension we also say that
pXk, ek, skqkďq is c-admissible if pXkqkďq is c-admissible.

Definition 2.4. We let GpF , cq be the disjoint union of all GppXk, ek, skqkďqq, where q ě 1
is any positive integer, pXkqkďq is any c-admissible q-tuple, and pek, skqkďq is any sequence
such that ek, sk are distinct elements of Xk for every k ď q.

Now suppose that pGiqiPI is a family of groups, and for every i P I there is an action of Gi
on X for every X P Fi. Let P “ pGiqciPI be the graph product of pGiqI associated to c. For
every c-admissible pXk, ek, skqkďq, there is a natural Gi-action on GppXk, ek, skqkďqq that
extends the Gi-action on each Xk such that ipXkq “ i, that is defined by declaring that Gi
acts trivially on Xkz tek, sku for every k such that ipXkq ‰ i. This is well defined because
of the property that no two consecutive Xk can be in Fi, guaranteed by the assumption
ipXkq ‰ ipXk`1q in Definition 2.3. This defines an action of the free product ˚IGi on
GppXk, ek, skqkďqq. The fact that pXk, ek, skqkďq is c-admissible ensures that if cpi, jq “ 1,
then the groups Gi and Gj act on GppXk, ek, skqkďqq with disjoint support. Hence the action
of ˚IGi on GppXk, ek, skqkďqq factors through the graph product P “ pGiqciPI .

Remark 2.5. Suppose for every i P I the group Gi is generated by a subset Si, and that the
graph structure on each X P Fi is the Schreier graph of the Gi-action on X. Then the graph
GppXk, ek, skqq is essentially the Schreier graph of the action of P “ pGiqciPI associated to
the generating subset YISi. The only difference is that loops should be added at the places
where the action of the Gi’s has been extended in a trivial way.

Lemma 2.6. Suppose that for every i P I, the Gi-action on
Ů

XPFi X is faithful. Then the
action of the graph product P “ pGiqciPI on GpF , cq is faithful.

Proof. Let g be a non-trivial element of P . Consider the decompositions of the form

g “ gn ¨ ¨ ¨ g1,
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where for each s we have that gs is non-trivial and there is is P I (necessarily unique) such
that gs P Gis . Among all such decomposition, we choose one such that n is minimal. Since
g is non-trivial, n ě 1. We define a sequence pr1, . . . , rqq inductively by setting r1 “ 1,
and defining rk`1 as the smallest s ě rk ` 1 such that cpipsq, iprkqq “ 0 (equivalently, Gipsq
does not commute with Giprkq). We also define rq`1 “ n ` 1. Minimality of n implies
that for every 1 ď k ď q and every rk ` 1 ď s ď rk`1 ´ 1, we have gs R Giprkq. Let
γk “ grk`1´1 ¨ ¨ ¨ grk for 1 ď k ď q, so that g “ γq ¨ ¨ ¨ γ1.

Since Gi acts faithfully on
Ů

XPFi X for every i P I, for every k ď q one can find
Xk P Firk and xk P Xk such that grkpxkq ‰ xk. We set ek “ xk, sk “ grkpxkq. We look at
how the element g acts on GppXk, ek, skqkďqq. Since gs does not belong to Giprkq for every
rk` 1 ď s ď rk`1´ 1, gs acts trivially on sk. Hence γkpekq “ sk for every k ď q, and hence
it follows that gpe1q “ sq. So if q “ 1 then g acts non-trivially since e1 ‰ s1. If q ě 2 then
Xq and X1 are either disjoint (when q ě 3), or intersect only along s1 “ e2 if q “ 2. Hence
in all cases the element g moves e1. So for every non-trivial element g of P , there exists a
GppXk, ek, skqkďqq on which g acts non-trivially. So P acts faithfully on GpF , cq. �

Recall that Cpfq has been defined in the introduction (Definition 1.1).

Proposition 2.7. Let f : NÑ N, and let pGiqI be a finite collection of groups in the class
Cpfq. Then any graph product P “ pGiqciPI belongs to Cpgq with gpnq “ nfpnq.

Proof. For each i P I there is a Gi-set Xi such that the Gi-action on Xi is faithful and
verifies volGi,Xipnq ď fpnq. The statement then follows from Lemma 2.2 and Lemma 2.6
(and Remark 2.5), applied to Fi “ tXiu and F “ \IFI . �

2.3. A subclass closed under graph products. In this section we prove that, under
a mild assumption on the function f , a certain subclass of Cpfq is closed under finite
graph products (Proposition 2.13). The definition of this subclass is inspired by the work
of the third author [Sal21], and Proposition 2.13 elaborates on [Sal21, Theorem 3]. In
particular Proposition 2.13 provides an elementary proof of the result from [Sal21] that
finitely generated right-angled Artin groups admit a faithful action with linear growth.
(Note that Theorem 3 in [Sal21] is stronger than that).

For an increasing function f : R` Ñ R`, consider the following condition:

(1) DC1 ą 0 ; @k ě 1 @ρ1, . . . , ρk ě 0,
ÿ

iďk

fpρiq ď C1f

˜

C1

ÿ

iďk

ρi

¸

.

It is a rather mild condition. A sufficient condition for (1) to hold is that n ÞÑ fpnq{n is
increasing. For instance fpnq “ nα satisfies (1) for every α ě 1.

Lemma 2.8. Let pXkqkďq be a q-tuple of finite graphs, and ek, sk distinct elements of Xk

for every k ď q. Suppose that there is an increasing function f : R` Ñ R` and C ą 0 such
that:

(1) every ball of radius n in Xk has cardinality at most CfpCnq for every k ď q.
(2) f satisfies (1).
(3) diampXkq ď Cdpek, skq for every k ď q.
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Then there is a constant C 1 ą 0 depending only on C and f such that every ball of radius
n in GppXk, ek, skqkďqq has cardinality at most C 1fpC 1nq.

Proof. Let C1 coming from the fact that f satisfies (1). Let n ě 1. Let x be a vertex in
GppXk, ek, skqkďqq, and let ` such that x belongs to X`. Let Bpnq denote the ball of radius
n around x in GppXk, ek, skqkďqq. Let X`´`1 , . . . X`, . . . X```2 be the members of pXkqkďq
that Bpnq intersects. Certainly we have

dpe``1, s``1q ` ¨ ¨ ¨ ` dpe```2´1, s```2´1q ď n

and
dpe`´1, s`´1q ` ¨ ¨ ¨ ` dpe`´`1`1, s`´`1`1q ď n,

and Bpnq is contained in the union of X`´`1`1, . . . , X`´1, X``1, . . . , X```2´1 and the inter-
section between Bpnq and X` YX`´`1 YX```2 :

|Bpnq| ď
`1´1
ÿ

k“1

|X`´k| `

`2´1
ÿ

k“1

|X``k| ` |BX`px, nq| ` |BX`´`1
ps`´`1 , nq| ` |BX```2

pe```2 , nq|.

Conditions 1 and 3 ensure |Xk| ď CfpCdiampXkqq ď CfpC2dpek, skqq for every k ď q.
Hence we obtain

|Bpnq| ď C
`1´1
ÿ

k“1

fpC2dpe`´k, s`´kqq ` C
`2´1
ÿ

k“1

fpC2dpe``k, s``kqq ` 3CfpCnq

ď C1Cf

˜

C1C
2

ÿ

kď`1´1

dpe`´k, s`´kq

¸

` C1Cf

˜

C1C
2

ÿ

kď`2´1

dpe``k, s``kq

¸

` 3CfpCnq

ď 2C1CfpC1C
2nq ` 3CfpCnq,

where in the second inequality we have used that f satisfies (1), and the third inequality
follows from the above upper bounds

ř

dpe`´k, s`´kq,
ř

dpe``k, s``kq ď n. �

Definition 2.9. Let G “ xSy be a finitely generated group, and X a G-set. We say that
the G-action on X has large displacement if all G-orbits in X are finite, and if there is
C ą 0 such that for every non-trivial element g P G, there is a G-orbit O in X and x P O
such that gx ‰ x and diampΓpG,Oqq ď Cdpx, gxq.

Here by ΓpG,Oq we mean the Schreier graph of the G-action on O (which is a connected
component in the larger graph ΓpG,Xq). It is easily checked that this condition does not
depend on the choice of S (although C can depend on S). Note that the definition forces
in particular the group G to be residually finite.

Definition 2.10. We denote by CLDpfq Ă Cpfq the class of groups admitting an action
with large displacement and of growth at most fpnq.

Example 2.11.
(1) Every faithful action of a finite group has large displacement.
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(2) The action of Z on
Ů

ně1 Z{nZ has large displacement. Hence Z belongs to CLDplinq.
(3) If G1, . . . , Gk admit actions with large displacement respectively on X1, . . . , Xk,

then the action of G1 ˆ ¨ ¨ ¨ ˆ Gk on X1 \ ¨ ¨ ¨ \Xk has large displacement. Hence
each class CLDpfq is closed under direct products.

Here is a slightly more elaborated example:

Proposition 2.12. For every d ě 1 and p ě 2, the wreath product G “ pZ{pZq oZd belongs
to CLDpfq for fpnq “ nd.

Proof. We denote elements of G as pairs pf, uq, with f : Zd Ñ Z{pZ of finite support and
u P Zd. For m ě 2, set Hm “ tpf, uq :

ř

vPpmZqd fpvq “ 0, u P mZdu. Then Hm is a finite
index subgroup of G, of index pm. Set Xm :“ G{Hm and X “ \mXm. We check that
the action of G on X has large displacement and satisfies volG,Xpnq » nd. Consider the
standard generating set S “ tpδ0, 0q, p0, eiq, i “ 1, . . . du, where δ0 : Zd Ñ Z{pZ takes the
value 1 on 0 and 0 elsewhere, and e1, . . . , ed is the standard basis of Zd. Note first that the
map GÑ pZ{pZqˆpZ{mZqd that sends pf, uq P G to p

ř

vPmZd fpvq, u mod mq descends to
a bijection of the coset space G{Hm with pZ{pZq ˆ pZ{mZqd, so that we may identify Xm

with pZ{pZq ˆ pZ{mZqd. Under this identification, the action of G on Xm coincides with
the standard wreath product action of the natural quotient pZ{pZq o pZ{mZqd. Explicitly,
the action of elements in the generating set S is described as follows: the lamp generator
pδ0, 0q permutes cyclically pZ{pZq ˆ t0u and acts trivially elsewhere; each element p0, eiq
maps pr, u mod mq to pr, u ` ei mod mq. In particular the Schreier graph of the G-action
on Xm is isomorphic (ignoring loops) to the graph obtained taking a cycle of length p and
gluing to each point a copy of the standard Cayley graph of pZ{mZqd. It follows that
volG,Xpnq » nd, and that C1m ď diampXmq ď C2m for some constants C1, C2. For the
large displacement property, let g “ pf, vq be a non-trivial element of G. Suppose first that
v ‰ 0, and choose m “ 2|v|, where | ¨ | denotes the standard word metric of Zd. Then,
since the natural projection of Xm to pZ{mZqd is equivariant, for every x P Xm we have
dpx, gxq ě |v| ě 1

2C1diampXmq. Suppose now that v “ 0. Let u be such that fpuq ‰ 0 and
with |u| maximal, and choose again m ą 2|u|. Let x P Xm » pZ{pZq ˆ pZ{mZqd be the
point x “ p0, u mod mq. Then gx “ pfpuq, u mod mq. From the description of the graph
ΓpG,Xmq one can see that dpx, gxq ě 2|u| ě C1diampXmq. �

Our main motivation for considering the class CLDpfq is the following:

Proposition 2.13. If f : R` Ñ R` is increasing and satisfies (1), then the class CLDpfq
is closed under finite graph products.

Proof. Let pGiqI be a finite collection of groups in CLDpfq. For every i P I let Yi be a Gi-set
such that the Gi-action on Yi has large displacement and growth at most fpnq. Let Si be
a finite generating subset of Gi and Ci a constant as in Definition 2.9. Let P “ pGiqciPI be
a graph product, generated by S “ YSi. Set C “ maxCi.

For i P I, let Fi be the set of Gi-orbits in Yi, and F the disjoint union of the Fi.
We consider the subset of GpF , cq, denoted by Y , consisting of the disjoint union of all
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GppXk, ek, skqkďqq, where q ě 1, pXkqkďq is a c-admissible q-tuple of elements of F , and
ek, sk are distinct elements of Xk with the condition that diampXkq ď Cdpek, skq for every
k ď q. The group P acts on Y , and every P -orbit in Y is finite because all the members of
F are finite. Moreover Lemma 2.8 ensures volP,Y pnq ď fpnq. Hence to conclude the proof
it suffices to see that the P -action on Y has large displacement.

Let g be a non-trivial element of P . We repeat verbatim the argument in the proof of
Lemma 2.6. We find a decomposition g “ γq ¨ ¨ ¨ γ1 and a c-admissible pXk, ek, skqkďq such
that γkpekq “ sk for every k ď q (so that gpe1q “ sq). The assumption that the Gi-action
on Yi has large displacement allows to ensure that diampXkq ď Cdpek, skq for every k ď q.
Hence if we write X “ GppXk, ek, skqkďqq, then X P Y and

diampXq ď

q
ÿ

k“1

diampXkq ď C

q
ÿ

k“1

dpek, skq “ Cdpe1, sqq.

�

2.4. The Grigorchuk group. In this section we prove that the Grigorchuk group belongs
to CLDplinq. We denote by T “ t0, 1u˚ the rooted tree of finite binary words, where each
word w is connected by an edge to wx, x P t0, 1u. Recall that the Grigorchuk group G is
the subgroup of the automorphism group AutpT q generated by the set of automorphisms
S “ ta, b, c, du given by the recursive rules

ap0wq “ 1w, ap1wq “ 0w;
bp0wq “ 0apwq, bp1wq “ 0cpwq;
cp0wq “ 0apwq, cp1wq “ 1dpwq;
dp0wq “ 0w, dp1wq “ 1bpwq.

We denote by Γn the Schreier graph of the action of G on the level t0, 1un of the tree.
We recall basic properties of the structure of these graphs, see [BG00] for a more detailed
description. Each Γn is isometric to an interval of length 2n ´ 1 in Z (with loops and
multiple edges, which won’t be important for us). Along these segments, binary words
are ordered following the Gray code ordering, namely each w P t0, 1u is connected by an
edge in Γn to the word obtained by changing its first digit, and to the word obtained by
changing the digit that follows the first appearance of 0 in w (if the latter exists). Thus all
words have exactly two neighbours, with the exception of the words 11 ¨ ¨ ¨ 11 and 11 ¨ ¨ ¨ 10,
which lie at the extreme points of Γn (we shall picture this with 11 ¨ ¨ ¨ 11 as the leftmost
point and 11 ¨ ¨ ¨ 10 as the rightmost point). Let us denote by dn the associated distance on
t0, 1un. The map pn : t0, 1un Ñ t0, 1un´1 that erases the last digit induces a covering map
pn : Γn Ñ Γn´1, which corresponds to folding Γn around its middle edge.

Proposition 2.14. Let G be the Grigorchuk group and retain the above notation. Then for
every non-trivial element g P G, there exists n ě 1 and w P t0, 1un such that dnpgw,wq ě
1
8 diampΓnq. In particular G belongs to CLDplinq.

Recall that portrait of an element g P G is the collection permutations pσwqwPT , where
each σw P Symp2q specifies the action of g on the two children of w. In formulas, we have
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gpwxq “ gpwqσwpxq for x P t0, 1u. We say that w is an active vertex of g if σw is non-
trivial. We will rely on a result in [AS07], where Arzhantseva and Šunić provide an explicit
list of all the restrictions of portraits of elements of Grigorchuk groups to finite subtrees of
depth 3 (and show that this characterises the closure of G in AutpT q).

Proof of Proposition 2.14. Let g P G be non-trivial. Let m be the smallest level containing
active vertices. We can suppose that G fixes t0, 1un for all n ď 3, or the conclusion holds
true trivially for g, since diampΓnq ď 7 for n ď 3 and any point which is not fixed by
g is moved at distance at least 1. Hence m ě 3. Choose w P t0, 1um active, let w0 be
the projection of w at level m ´ 3, and T0 be the finite rooted at w0 and containing all
its descendants up to 3 levels. Hence w is a leaf of T0, and all active vertices for g on T0

must be leaves, by minimality of m. It follows from Theorem 1 in [AS07] that at least
another leaf of T0, distinct from w, must be active. It follows that we can find two distinct
active vertices w, v P t0, 1um having the same projection at level m´ 3. Consider now the
action on level m ` 1. Since g fixes level m, it must preserves all fibers of the covering
map pm`1 : Γm`1 Ñ Γm, which consist each of two points, and it acts non-trivially on each
of the two fibers p´1

m`1pwq, p
´1
m`1pvq. Let I Ă Γm be the interval ending at the right-most

points of length 2m´3 ě 1
8 diampΓmq. For any vertex u R I, the two points in p´1

m`1puq are
at distance at least 2|I| ě 1

8 diampΓm`1q in Γm`1. On the other hand the projection map
from Γm Ñ Γm´3 is injective on I, and since w, v have the same image, they can’t both
belong to I. Hence the desired conclusion follows, for n “ m` 1. �

2.5. The proof of Proposition 2. Note that Proposition 2 from the introduction follows
from Proposition 2.13, together with the combination of Example 2.11, Proposition 2.12
and Proposition 2.14.

3. Schreier growth gaps for free products

3.1. A criterion. Let G be a finitely generated group endowed with a finite symmetric
generating set S. If X is a G-set, we endow X with the its Schreier graph structure. The
associated simplicial distance is denoted dG,X . We denote by BG,Xpx, nq the corresponding
balls. The support of an element g P G in X is the set suppXpgq “ tx P X : gx ‰ xu.
Given R ą 0, we shall say that two subsets A,B Ă X are R-separated if dG,Xpa, bq ě R for
every a P A and b P B. Finally the R-coarse connected components of a subset A Ă X
are the equivalence classes of the equivalence relation on A generated by the pairs pa1, a2q

such that dG,Xpa1, a2q ď R.

Definition 3.1. Let G be a finitely generated group endowed with a finite symmetric
generating set S. Let α, β : N Ñ N be functions such that αpnq ď βpnq. We say that G
satisfies the sparse support condition at scale pα, βq, if for every faithful G-set X such that
volG,Xpnq ğ βpnq, there exists constants C,D ą 0 such that for every R ą 0, there exists
a non-trivial element g P G satisfying the following
(C1) We have dG,Xpx, gxq ď D for every x P X.
(C2) Every D-coarse connected component of suppXpgq has diameter at most C.
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(C3) Any two distinct D-coarse connected components of suppXpgq are R-separated.
(C4) For every x P suppXpgq, we have |BG,Xpx,Rq| ě 1

Cαp
1
CRq.

This condition does not depend on the choice of a finite generating set S for G. Note that
condition (C4) implies in particular that G satisfies a Schreier growth gap αpnq. The sparse
support condition implies that this gap can be improved for any non-trivial free product
with G, as follows.

Proposition 3.2. Suppose that G satisfies the sparse support condition at scale pα, βq.
Then for every non-trivial finitely generated group H, the group G ˚ H has a Schreier
growth gap minpnαpnq, βpnqq.

Proof. Set L “ G ˚ H. We fix a finite generating set of L of the form S Y T , where S is
a generating set of G and H is a generating set of H. Let t P T be a non-trivial. Let X
be a faithful L-set. We shall consider on X the Schreier graph distance by dL,X , as well as
the distance dG,X induced by restricting the action to G. Suppose that volG,Xpnq ğ βpnq
(else, the desired conclusion is true trivially). Let C,D be as in Definition 3.1, fix R ą 0
(which we may assume is even), and let g P G be the corresponding element. Consider
the commutator h “ rg, ts. Note that suppXphq is contained in the 1-neighbourhood of
suppXpgq (with respect to the distance dL,X).

Since h has infinite order and the action is faithful, we can find x0 P X such that the points
xn “ hnpx0q are pairwise distinct for n “ 0, . . . , R. Note that dL,Xpxn, xn`1q ď 2D` 2, by
condition (C1). For each point xn we choose yn P suppXpgq such that dL,Xpxn, ynq ď 1..
Then all points y0, . . . , yR belong to the ball BL,Xpx0, D1Rq, with D1 “ 2D ` 3. Since all
D-coarse connected components of suppXpgq with respect the distance dG,X have diame-
ter bounded by C, their 1-neighbourhood in the distance dL,X has cardinality uniformly
bounded by some constant C1 ą 0 (not depending on R).

Now from the fact that the points xn are all distinct, we deduce that at most C1

points y0, . . . , yR belong to the same D-coarse connected component. It follows that from
ty0, . . . , ynu we can extract a collection of points z1, . . . , ztR{C1u belonging to distinct D-
coarse connected components. Then the balls BG,Xpzi, R{2q are pairwise disjoint by (C3),
moreover they are contained in BL,Xpx0, D2Rq, with D2 “ D1`1{2. From (C4) we deduce
that

|BL,Xpx0, D2Rq| ě

tR{C1u
ÿ

i“1

|BG,Xpzi, R{2q| ě
1

C2
Rαp

1

C2
Rq,

for some constant C2 ą 0, which finishes the proof. �

3.2. Confined subgroups. We recall the following definition.

Definition 3.3. Let G be a group. A subgroup H of G is confined if there exists a finite
subset P Ă Gzt1u such that Hg X P ‰ H for all g P G.

Equivalently, a subgroup H is confined if the closure of the set of conjugates of H in
the space SubpGq of subgroups of G, does not contain the trivial subgroup. The following
simple lemma explains the usefulness of the notion of confined subgroups for the study of
growth of actions. See [LBMB22a, Lemma 1.8] for a proof.
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Lemma 3.4. Let G be a finitely generated group, and X a G-set. Let

SpXq “ tGx : x P Xu Ď SubpGq.

Then for every H P SpXq, we have volG,G{Hpnq ď volG,Xpnq. In particular if some Gx is
not confined then volG,Xpnq » volGpnq.

We will invoke the following, which is a particular case of Proposition 1.6 in [LBMB22a].

Lemma 3.5. Let G be a finitely-generated group, and let H ď K be subgroups of G. Then
volG,G{K ď volG,G{H , and if in addition H has finite index in K, then volG,G{H » volG,G{K .

3.3. Houghton groups. If Ω is a set, SympΩq is the group of all self-bijections of Ω.
We denote by Altf pΩq the group of alternating finitely supported permutations of Ω. For
H ď SympΩq, write ΩH,f for the union of finite orbits under H, and ΩH,8 for the union of
infinite ones. We say that a partition is H-invariant if every element of H sends a block of
the partition to a (possibly different) block of the partition.

The following is a special case of [LBMB22b, Proposition 3.7].

Proposition 3.6. Let Ω be a countable set, and let G ď SympΩq be any subgroup containing
Altf pΩq. Then a subgroup H ď G is confined if and only if ΩH,f is finite and there exists
an H-invariant partition ΩH,8 “ Ω1 Y ¨ ¨ ¨ Y Ωk into infinite subsets such that H contains
Altf pΩ1q ˆ ¨ ¨ ¨ ˆAltf pΩkq.

For r ě 2, let Ξr be the graph obtained by gluing r infinite rays `1, ¨ ¨ ¨ , `r at their origin.
The Houghton group Hr is the group of all permutations g of the vertex set of Ξr, such
that there exists finite subset E,F Ă Ξr such that for every i, g|`izE is an isometry onto
`izF . The group Hr is finitely generated for r ě 2. Since the action of Hr on Ξr is by
permutations of bounded displacements, it satisfies volHr,Ξrpnq » n.

In what follows, we fix r ě 2. Let us denote Ω the vertex set of Ξr, and by A :“ Altf pΩq.
Recall that A is simple and contained in every non-trivial normal subgroup of SympΩq. In
particular A is a normal subgroup of Hr (and the quotient Hr{A can easily be seen to be
isomorphic to Z{2Zˆ Zr´1).

Proposition 3.7. Let G :“ Hr be the Houghton group, with r ě 2. Let X be a faithful
G-set such that volG,Xpnq ń n2. Let X “ \iPIXi be the decomposition of X into G-orbits.
Then for every i either the action of G on Xi is not faithful (equivalently, the group A acts
trivially), or it is conjugate to the diagonal action on Ω ˆ Y , where Y is a finite G-set
whose cardinality is uniformly bounded (that is, the upper bound that does not depend on
the choice of the orbit Xi).

Proof. We fix a word metric ‖¨‖ on G, associated to some symmetric generating set. Let X
be a G-set as in the statement and K be the stabiliser of a point x0 P X such that A acts
non-trivially on the orbit Xi of x. The group G has exponential growth, so by Lemma 3.4,
K must be confined. Thus, we can apply Proposition 3.6.

Let us first show that |ΩK,f | ď 1. Suppose by contradiction that this is not the case. Let
K0 ď K be the pointwise stabilizer of ΩK,f , which has finite index. Then volG,G{K0

pnq »
volG,Xipnq by Lemma 3.5. Choose two distinct points x1, x2 P ΩK,f and let K1 ě K0 be
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their pointwise stabiliser. Since volG,Xipnq ě volG,G{K1
pnq, a contradiction will follow if

we show that volG,G{K1
pnq ě n2. Since the action of G on Ω is highly transitive (that

is, transitive on n-tuples of distinct points), upon replacing K1 by some G-conjugate we
suppose that xi is the point at position 1 on `i for i “ 1, 2 (with the convention that the
common origin is at position 0).

Now for i “ 1, 2, let σi be the transposition that swaps the first and second positions of
`i. Let also ti P G be any element such that ti|`i shifts `i inside itself by 1. For example,
these can be taken to be t, t´1 where t is the shift along a Z-isomorphic ray coming from
juxtaposing the rays `1, `2. For i “ 1, 2 and n ě 1 consider the element

γi,n “ pt
n
i σit

´n
i qptn´1

i σit
´n`1q ¨ ¨ ¨σi “ tni σipt

´1
i σiq

n.

Note that ‖γi,n‖ ď Cn, with C “ maxt‖σi‖, ‖ti‖ | i “ 1, 2u. On the other hand each γi,n
is a permutation with finite support contained in `i, and γi,npxiq is the point at position
n ` 1 on `i. Hence applying products of the form γ1,m1γ2,m2 to the pair px1, x2q, with
0 ď m1,m2 ď n shows that volG,G{K1

pnq ě n2. This is a contradiction and proves the
claim that |ΩK,f | ď 1.

We now consider the partition ΩK,8 “ Ω1 Y ¨ ¨ ¨ Y Ωk and claim that k “ 1. Suppose
that k ě 2. By a similar reasoning as above (passing first to a finite index subgroup of K,
and then to an overgroup), we have volG,Xpnq ě volG,G{K1

pnq, where K1 is the subgroup
of G of elements that preserve both Ω1 and Ω2, so a contradiction will follow if we show
that volG,G{K1

pnq ě n2. Fix n large enough. Again by high transitivity and using the
fact that Ω1,Ω2 are both infinite, we can find g P G such that the point at position 1
on `1 is in gpΩ1q, and all points on `1 at positions between 2 and n are in gpΩ2q, while
the symmetric statement holds for `2. Now applying to gpΩ1q and gpΩ2q the same the
elements h “ γ1,m1γ2,m2 defined above with 1 ď mi ď n, we obtain n2 different pairs
phgpΩ1q, hgpΩ2qq with ‖h‖ď 2Cn. This shows that the ball of radius 2Cn around gK1 has
cardinality at least n2. Hence k “ 1.

It follows that K contains AltpΩK,8q. This also shows that ΩK,f ‰ ∅, since otherwise
K would contain the normal subgroup A, contradicting that the action on XI is faithful.
Hence K X A contains a point stabiliser for the action of A on Ω, and hence is equal to
it, as the latter is a maximal subgroup of A. Since K was an arbitrary point stabiliser, we
deduce that the action of A on Xi is conjugate on each of its orbits to the standard action
of A on Ω. For each A-orbit O Ă Xi we denote by jO : O Ñ Ω the unique A-equivariant
bijection (its uniqueness follows from the fact that the only A-equivariant permutation of
Ω is the identity).

Let Y “ Xi{A, the space of A-orbits, on which G acts since A is normal. For a point
x P A, we denote by Opxq its A-orbit. Consider the map ι : Xi Ñ Ω ˆ Y given by ιpxq “
pjOpxqpxq,Opxqq. This map is equivariant (this is obvious for the second component; for
the first, it follows from the observation that the map g´1 ˝ jOpgxq ˝ g is an A-equivariant
bijection from Opxq to Ω, and thus it is equal to jOpxq). The map ι is also clearly injective.
To check that it is surjective it is enough to observe that the diagonal G-action on Ωˆ Y
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is transitive: this is true because the G-action on Y is transitive, and the group A acts
trivially on Y and transitively on each fiber Ωˆ tyu.

To conclude we need to argue that Y must have uniformly bounded cardinality. Fix
n and suppose that the diameter of Y is at least n. Then we can find a point y P Y
and elements s1, . . . , sn in the generating set of G such that, if we set gm “ sm ¨ ¨ ¨ s1,
then the points y, g1y, . . . , gny are pairwise distinct (the point y and sequence psiq can
be found by looking at any path in the Schreier graph of Y of length at least n). Next
consider again the elements γi,n above. Note that for every n, the element δn “ γ1,nγ2,n

belongs to A and thus acts trivially on Y , and coincides with γ1,n in restriction to `1 Ă Ω.
Let x P `1 be at position 1, and consider the point px, yq P Ω ˆ Y . Then the n2 points
gm2δm1px, yq “ pgm2γ1,m1x, gm2yq for m1,m2 ď n are pairwise distinct, showing that there
are at least n2 in a ball of radius Opn2q. This can’t be true for n arbitrarily large, showing
that the cardinality of Y must be uniformly bounded. �

Theorem 3.8. For every r ě 2 and every non-trivial finitely generated group K, the group
Hr ˚K has a Schreier growth gap n2.

Proof. By Proposition 3.2, it is enough to show that G “ Hr satisfies the sparse support
condition at scale pn, n2q. This is an immediate consequence of Proposition 3.7. Indeed fix
any non-trivial element g P A. Then for every faithful G set X such that volG,Xpnq ğ n2,
the element g has finite support in each G-orbit, so one can find constants C,D ą 0 such
that g satisfies conditions (C1)–(C3) for every R ą 0, and condition (C4) is automatic,
because every infinite connected graph has at least linear growth. �

3.4. Topological full groups. Throughout this section we let Z be a Cantor space, and
G ď HomeopZq be a subgroup of its group of homeomorphisms. Recall that the topological
full group of G is the group FpGq of all homeomorphisms h of Z such that for every z P Z,
there exist a clopen neighbourhood U of z and g P G such that h|U “ g|U . When G is a
cyclic group generated by a single homeomorphism ϕ, we write Fpϕq instead of FpGq.

We say that an element g P FpGq is a 3-cycle if g3 “ 1 and the set supppgq :“ tz : gpzq ‰ zu
is clopen and can be partitioned into 3 distinct clopen subsets U1, U2, U3 such that gpUiq “
Ui`1 (with i mod 3). Following Nekrashevych [Nek19], the subgroup of FpGq generated by
3-cycles is called the alternating full group of G, and is denote ApGq. It is shown in [Nek19]
that if the action of G on Z is minimal (that is, all its orbits are dense), then the group ApGq
is simple and contained in every non-trivial normal subgroup of FpGq. It is also shown in
[Nek19] that if G is finitely generated and its action on Z is expansive and all its orbits have
cardinality at least 5, then ApGq is finitely generated. Recall that an action of a finitely
generated group G on the Cantor space Z is expansive if and only if it is conjugate to a
subshift (a G-invariant subset of t1, ¨ ¨ ¨ duG for some d ě 2). In many cases, results of Matui
show that ApGq coincides with the commutator subgroup of FpGq (see his survey [Mat17]).

It is well-known (and not difficult to see) that if the group G is finitely generated, then
for every finitely generated subgroup G of FpGq, the identity map on Z defines a Lipschitz
map between the graphs of the actions ΓpG,Zq Ñ ΓpG, Zq. Since the groups ApGq and G
have the same topological full groups, it follows that if the action of G on Z is expansive and
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has no orbits of cardinality less than 5, then the graph ΓpApGq, Zq is bi-Lipschitz equivalent
to ΓpG, Zq. In particular volApGq,Zpnq » volG,Zpnq.

For a group G acting on Z by homeomorphisms, and for a finite set Q “ tz1, . . . , zru P Z
we denote by GQ the setwise stabiliser of Q, and, and by G0

Q its subgroup consisting of
elements fix pointwise some neighbourhood of every z P Q. The following is proven in
[MB18].

Theorem 3.9 ([MB18]). Let G ď HomeopZq be a group acting minimally on Z, and let
G “ ApGq. Then a subgroup H of G is confined if and only if there exists a finite set Q Ă Z
such that G0

Q ď H ď GQ (the set Q is moreover unique).

Corollary 3.10. Retain the assumptions of Theorem 3.9, and let αpnq “ volG,Zpnq. Let
X be a faithful G-set such that volG,Xpnq ğ αpnq2, and let H be the stabiliser of a point in
X. Then there exists z P Z such that G0

z ď H ď Gz.

Proof. The assumption implies that H must be confined (Lemma 3.4). Let Q Ă Z be the
finite subset given by Theorem 3.9. Enumerate the points of Q as z1, . . . , zr and choose
pairwise disjoint clopen neighbourhoods Ui of zi. For each i we choose a finitely generated
subgroup Gi ď G, supported on Ui, such that the inclusion map Ui Ñ Z defines a quasi-
isometry of graphs ΓpGi, Uiq Ñ ΓpG,Zq (one can choose Gi to be the alternating full group
of the restriction of the groupoid of germs of G to Ui; its finite generation follows from
[Nek19, Proposition 5.4] and the quasi-isometry of the graphs from [Nek15, Cor 2.3.4]). It
follows that the action of G1 ˆ ¨ ¨ ¨ ˆ Gr on the orbit of Q has growth bounded below by
αpnqr, from which it follows that volG,G{Hpnq ě volG,G{GQpnq ě αpnqr, which contradicts
the assumption unless r “ 1. �

Recall that for any subgroup G ď HomeopZq, the maps Z Ñ SubpGq defined by z Ñ Gz
and z Ñ G0

z are respectively upper and lower semi-continuous. When G is countable,
semi-continuity implies that Gz “ G0

z for z in a dense Gδ subset.

Theorem 3.11. Assume that G is finitely generated and its action on Z is minimal and
expansive, and let αpnq “ volG,Zpnq. Then for every non-trivial finitely generated group H,
the group ApGq ˚H has a Schreier growth gap nαpnq.

Proof. We shall show that G satisfies the sparse support condition at scale pαpnq, αpnq2q. As
usual we fix once and for all a finite symmetric generating set S for G, which is used to define
all Schreier graphs and distances below. Let X be a faithful G-set with volG,Xpnq ğ αpnq2.
We shall show that it satisfies the conclusion of Definition 3.1 with constants D “ C “ 2.
To this end, fix R ą 2.

By [LBMB23, Lemma 6.2], for every G-orbit O in Z, we have volG,Opnq “ αpnq. Hence
we can find a point z0 P Z satisfying the generic condition that G0

z0 “ Gz0 and such that
|BZpz0, Rq| “ αpRq. Choose s1, s2 P S such that z0, s1pz0q, s2s1pz0q are distinct. Let pVnq
be a system of clopen neighbourhoods of z0, and such that Vn, s1pVnq, s2s1pVnq are disjoint
for every n. Define accordingly the sequence phnq of 3-cycles given by
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hnpzq “

$

’

’

&

’

’

%

s1pzq z P Vn
s2pzq z P s1pVnq
s´1

1 s´1
2 pzq z P s1s1pVnq

z else.

Observe that dG,Zpz, hnpzqq ď 2 for every z P Z, by construction. The supports suppphnq
decreases to tz0, hnpz0q, h

2
npz0qu as nÑ8. It follows that for n is sufficiently large, we have

BZpz0, Rq X suppZphnq “ tz0, s1pz0q, s2s2pz0qu. This shows that for n large, the element
g “ hn satisfies the conditions in Definition 3.1 for the action on Z.

Now consider the action on X and pick a point x P X, and denote by φpxq P Z the unique
point such that G0

φpxq ď Gx ď Gφpxq, given by Corollary 3.10. Note that suppXphnq Ă
φ´1pVn Y s1pVnq Y s2s1pVnqq, since hn P G0

φpxq for φpxq R Vn Y s1pVnq Y s2s1pVnq. However
since the point z0 satisfies G0

z0 “ Gz0 (and so do s1pz0q, s2s1pz0q) then it follows from
semi-continuity and the inclusions G0

φpxq ď Gx ď Gφpxq that for n large enough every x
such that φpxq P Vn, then the ball BXpx,Rq will be isomorphic to the corresponding ball
BZpz0, Rq, and similarly if φpxq P s1pVnq, s2s1pVnq, with z0 replaced by the corresponding
image. Therefore the element g “ hn satisfies all items in Definition 3.1 for the action on
X as well. �
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